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PREFACE 
 

Measurement uncertainty is the doubt that exists about a measurementôs result.  Every 

measurement - even the most careful - always has a margin of doubt.  Evaluating the uncertainty 

in the measurement process determines the ñgoodnessò of a measurement.  

This Handbook provides tools for estimating the quality of measurements. Measurement 

uncertainty is an estimation of the potential error in a measurement result that is caused by 

variability in the equipment, the processes, the environment, and other sources.  Every element 

within a measurement process contributes errors to the measurement result, including 

characteristics of the item being tested.  Evaluation of the measurement uncertainty characterizes 

what is reasonable to believe about a measurement result based on knowledge of the 

measurement process.  It is through this process that credible data can be provided to those 

responsible for making decisions based on the measurements. 

In this context, it becomes apparent the more critical the application, the greater the need for 

measurement quality assurance.  Measurement uncertainty analysis can be used to mitigate risks 

associated with noncompliance of specifications and/or requirements which are validated 

through measurement.  Although the tools are available, often the overall uncertainty 

encountered during the measurement process is not assessed, controlled, or even fully 

understood.  The principles and methods recommended in this Handbook may be used as the 

fundamental building blocks for a quality measurement program.  From this foundation, good 

measurement data can support better decisions.  

Ensuring reliable and accurate products and services justifies a measurement assurance program 

as a cost benefit - providing the assurance of safety through measurement quality makes it 

imperative. 

A lack of standardization for quantified measurement uncertainty estimation often causes 

disagreements and confusion in trade, scientific findings, and legal issues.  The principles and 

methods contained in this Handbook are based, and in some instances, expand on the 

International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in 

Measurement (GUM), the international standardized approach to estimating uncertainty. 

ANSI/NCSL Z540.2-1997 (R2007), U.S. Guide to the Expression of Uncertainty in 

Measurement (U.S. Guide), is the U.S. adoption of the ISO GUM.   Additional guidance on 

estimating measurement uncertainty is available in many engineering discipline-specific 

voluntary consensus standards and complimentary documents.  However, for consistent results, it 

is imperative that the quantification of measurement uncertainty be based on the ISO GUM.  
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EXECUTIVE SUMMARY 
 

Measurements are an important aspect of decision making, communicating technical 

information, establishing scientific facts, monitoring manufacturing processes and maintaining 

human and environmental health and safety.  Consequently, industries and governments spend 

billions of dollars annually to acquire, install and maintain measurement and test equipment 

(MTE).   

 

The more critical the application, the greater the need for measurement quality assurance.  MTE 

accuracy is a key aspect of measurement quality.  However, the overall uncertainty encountered 

during the measurement process is not often assessed and controlled.   

 

The assessment and control of measurement uncertainty presupposes the ability to develop 

reliable uncertainty estimates.  This document provides an in-depth coverage of key aspects of 

measurement uncertainty analysis and detailed procedures needed for developing such estimates.   

 

Chapter 1 presents the purpose and scope of this document and discusses principal differences 

between ñclassicalò engineering methods and more recent methods developed to provide an 

international consensus for the expression of uncertainty in measurement.  

 

Chapters 2 and 3 provide foundational concepts and methods for estimating measurement 

uncertainty.  Key concepts and methods are summarized below.  Chapter 4 discusses how 

manufacturer specifications are obtained, interpreted and applied in uncertainty estimation.   

 

Chapters 5 through 7 present procedures for implementing key concepts and methods, using 

detailed direct measurement, multivariate measurement and measurement system examples.  

Chapter 8 provides guidance and illustrative examples for estimating the uncertainty in the 

measurement result obtained from four common calibration scenarios. Chapter 9 presents an 

advanced topic for estimating uncertainty growth over time.  

 

Appendix A provides definitions for terms employed throughout this document.  The terms and 

definitions are designed to be understood across a broad technology base.  Where appropriate, 

terms and definitions have been taken from internationally recognized standards and guidelines. 

 

Appendices B through D provide in-depth development of concepts and methods described in 

Chapters 2 and 3.  Appendix E provides an advance topic on applying Bayesian analysis to 

estimate unit-under-test (UUT) and MTE attribute biases and in-tolerance probabilities during 

calibration.  Appendices F through I provide additional analysis examples.  

 

Key Uncertainty Analysis Concepts and Methods 

Measurement Error and Uncertainty 

A measurement is a process whereby the value of a quantity is estimated.  All measurements are 

accompanied by error.  Our lack of knowledge about the sign and magnitude of measurement 

error is called measurement uncertainty.  Measurement errors are random variables that follow 

probability distributions.  A measurement uncertainty estimate is the characterization of what we 

know statistically about the measurement error.  Therefore, a measurement result is only 

complete when accompanied by a statement of the uncertainty in that estimate. 
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Uncertainty Analysis  

Uncertainty is calculated to support decisions based on measurements.  Therefore, uncertainty 

estimates should realistically reflect the measurement process.  In this regard, the person tasked 

with conducting an uncertainty analysis must be knowledgeable about the measurement process 

under investigation.   

 

To facilitate this endeavor, the measurement process should be described in writing.  Such 

documentation should clearly specify the measurement equipment used, the environmental 

conditions during measurement, and the procedure used to obtain the measurement.   

 

The general uncertainty analysis procedure consists of the following steps: 

 

1. Define the Measurement Process 

2. Identify the Error Sources and Distributions 

3. Estimate Uncertainties 

4. Combine Uncertainties 

5. Report the Analysis Results 

 

The first step in any uncertainty analysis is to identify the physical quantity whose value is 

estimated via measurement. This quantity, sometimes referred to as the ñmeasurand,ò may be a 

directly measured value or indirectly determined through the measurement of other variables.  It 

is also important to describe the test setup, environmental conditions, technical information about 

the instruments, reference standards, or other equipment used and the procedure for obtaining the 

measurement(s).  This measurement process information is used to identify potential sources of 

error. 

 

Measurement process errors are the basic elements of uncertainty analysis.  Once these 

fundamental error sources have been identified, then the appropriate distributions are selected to 

characterize the statistical nature of the measurement errors.  

 

With a basic understanding of error distributions and their statistics, we can estimate 

uncertainties.  The spread in an error distribution is quantified by the distributionôs standard 

deviation, which is the square root of the distribution variance.  Measurement uncertainty is 

equal to the standard deviation of the error distribution. There are two approaches to estimating 

measurement uncertainty.  Type A estimates involve data sampling and analysis.  Type B 

estimates use technical knowledge or recollected experience of measurement processes. 

 

Because uncertainty is equal to the square root of the distribution variance, uncertainties from 

different error sources can be combined by applying the ñvariance addition rule.ò  Variance 

addition provides a method for correctly combining uncertainties that accounts for correlations 

between error sources.  When uncertainties are combined, it is also important to estimate the 

degrees of freedom for the combined uncertainty.  Generally speaking, degrees of freedom 

signify the amount of information or knowledge that went into an uncertainty estimate. 

 

Reporting Uncertainty 

When reporting the results of an uncertainty analysis, the following information should be 

included: 
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1. The estimated value of the quantity of interest and its combined uncertainty and 

degrees of freedom. 

2. The mathematical relationship between the quantity of interest and the measured 

components (applies to multivariate measurements).  

3. The value of each measurement component and its combined uncertainty and 

degrees of freedom. 

4. A list of the measurement process uncertainties and associated degrees of freedom 

for each component, along with a description of how they were estimated. 

5. A list of applicable correlation coefficients, including any cross-correlations 

between component uncertainties.  

 

It is also a good practice to provide a brief description of the measurement process, including the 

procedures and instrumentation used, and additional data, tables and plots that help clarify the 

analysis results. 
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CHAPTER 1:  INTRODUCTION 
Concepts and methods presented in this document are consistent with those found in the 

International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in 

Measurement  (GUM).1   

 

Uncertainty is calculated to support decisions based on measurements.  Therefore, uncertainty 

estimates should realistically reflect the measurement process.  In this regard, the person tasked 

with conducting an uncertainty analysis must be knowledgeable about the measurement process 

under investigation.  

  

Note:  In this document, the terms standard uncertainty and uncertainty are used 

interchangeably. 

 

To facilitate this endeavor, the measurement process should be described in writing.  This write-

up should clearly specify the measurement equipment used, the environmental conditions during 

measurement, and the procedure used to obtain the measurement.   

 

1.1 Purpose 

While the GUM provides general rules for analyzing and communicating measurement 

uncertainty, it does not provide detailed procedures or instructions for evaluating specific 

measurement processes.2  In addition, new methods have been developed over the past several 

years that enhance the methodology of the GUM.  

 

This document provides a recommended practice that clearly explains key concepts and 

principles for estimating and reporting measurement uncertainty.  This document also includes 

advanced methods that extend the GUMôs guidance on estimating measurement uncertainty. 

 

1.2 Scope 

The analysis methods outlined in this document provide a comprehensive approach to estimating 

measurement uncertainty.  Basic guidelines are presented for estimating the uncertainty in the 

value of a quantity for the following measurement alternatives: 

 

¶ Direct Measurements ï The value of a quantity is obtained directly by 

measurement and not determined indirectly by computing its value from the 

values of other variables or quantities. 

¶ Multivariate Measurements ï The value of the quantity is based on measurements 

of more than one attribute or quantity. 

¶ Measurement Systems ï The value of a quantity is measured with a system 

comprised of component modules arranged in series. 

 

The structured, step-by-step uncertainty analysis procedures described herein address the 

important aspects of identifying measurement process errors and using appropriate error models 

and error distributions.  Advanced topics cover estimating degrees of freedom for Type B 

                                                 
1 Throughout this document, the term GUM refers to ISO Guide to the Expression of Uncertainty in Measurement and  

ANSI/NCSL Z540-2-1997, the U.S. Guide to the Expression of Uncertainty in Measurement. 

2 See section 1.4 of the GUM. 
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uncertainties, uncertainty analysis for alternative calibration scenarios, uncertainty growth over 

time and Bayesian analysis. 

 

Examples contained in the main body of this document provide detailed step-by-step analysis 

procedures that re-enforce important principles and methods.  Analysis examples included in the 

appendices address real-world measurement scenarios and follow a standardized format to 

clearly convey the necessary information and concepts used in each analysis. 

 

1.3 Background 

The GUM was developed to provide an international consensus for the expression of uncertainty 

in measurements.  This entailed the development of an unambiguous definition of measurement 

uncertainty and the application of rigorous mathematical methods for uncertainty estimation. 

 

Over the past twenty years or so, various uncertainty analysis standards, guides and books have 

been published by engineering organizations.  Examples of uncertainty analysis standards and 

other published material commonly used in the U.S. engineering community are listed below.   

 

¶ Test Uncertainty, ASME PTC 19.1-1998 (reaffirmed 2004). 

¶ Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME 

MFC-2M-1983 (reaffirmed 2001). 

¶ Assessment of Wind Tunnel Data Uncertainty, AIAA Standard S-071-1995. 

¶ Dieck, R.H.: Measurement Uncertainty Methods and Applications, 3rd Edition, 

ISA 2002. 

¶ Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for 

Engineers, 2nd Edition, John Wiley & Sons, 1999. 

 

Although many of these uncertainty analysis references have been updated or reaffirmed in 

recent years, the methods they espouse are distinctly different from those presented in the GUM.  

Consequently, confusion persists in the reporting and comparison of uncertainty estimates across 

technical organizations and disciplines. 

 

The methods and concepts presented in this document follow the GUM and are based on the 

properties of measurement error and the statistical nature of measurement uncertainty.  

Publications consistent with the GUM are listed in the references section of this document.   

 

Key differences are summarized in Table 1-1 to illustrate how the methods and concepts 

presented in this document supplant pre-GUM techniques.  The methods and concepts presented 

in this document are intended to provide necessary clarification about the topics introduced thus 

far, as well as other uncertainty analysis issues.  

 

1.4   Application 

The established best practices, procedures and illustrative examples contained in this document 

provide a comprehensive resource for all technical personnel responsible for estimating and 

reporting measurement uncertainty. 
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Table 1-1.  Comparison of Pre-GUM and GUM Methodologies 

Topic Pre-GUM GUM 

Measurement 

Error 

Measurement errors are categorized as either random or 

systematic.3  In this context, random error is defined as the 

portion of the total measurement error that varies in the short-

term when the measurement is repeated.  Systematic error is 

defined as the portion of the total measurement error that 

remains constant in repeat measurements of a quantity. 

The GUM refers only to errors that can occur in a given 

measurement process and does not differentiate them as random or 

systematic.  Measurement process errors can include repeatability, 

operator bias, instrument parameter bias, resolution error, errors 

arising from environmental conditions, or other sources.   

 

Additionally, each measurement error, regardless of its origin, is 

considered to be a random variable that can be characterized by a 

probability distribution. 

Measurement 

Uncertainty 

Many pre-GUM references propose that the uncertainty due 

to random error be computed by multiplying the standard 

deviation of a sample of measured values by the Studentôs t-

statistic4 with 95% confidence level, t95,n. 

95,ranx xu t sn=  or  95,ranx xu t sn= . 

The standard deviation, sx, of a sample of data is 

( )
2

1

n
k

x
k

x x
s

n=

-
= ä  

and the standard deviation in the mean value xs  is  

x
x

s
s

n
=  

The GUM supplants systematic and random uncertainties with 

standard uncertainty,5 which is a statistical quantity equivalent to 

the standard deviation of the error distribution.  

 

By definition, the standard deviation is the square-root of the 

distribution variance.6  Therefore, the uncertainty, ux, in a 

measurement, x = xtrue + ex, is  

var( ) var( )

var( ).

x true x

x

u x x e

e

= = +

=
 

In the above equation, x is the measured value, xtrue is the unknown 

true value of the measurand at the time of measurement, ex is the 

measurement error and var(.) is the variance operator. 

 

In this regard, uncertainty is not considered to be a ° limit or 

interval.  The standard uncertainty of a measurement error is 

determined from Type A or Type B estimates.   

                                                 
3 In the pre-GUM context, the terms random and precision are often used interchangeably, as are the terms systematic and bias. 

4 The Studentôs t-statistic and confidence level are discussed further in section 2.6.1. 

5 In this document, the terms standard uncertainty and uncertainty are used interchangeably. 

6 A mathematical definition of the distribution variance is presented in section 2.4. 
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Topic Pre-GUM GUM 

where n is the sample size, xk is the kth measured value,x  is 

the sample mean value and n is the degrees of freedom, equal 

to n-1. 

 

Topic Pre-GUM GUM 

Measurement 

Uncertainty 

(continued) 

These uncertainties, often expressed by the symbol U95, are 

more reflective of confidence limits or expanded 

uncertainties.7 

 

Pre-GUM references also state that the uncertainty due to 

systematic error or bias is expressed as 

biasu B=° 

where B is based on past experience, manufacturer 

specifications, or other information.  This uncertainty is also 

more reflective of confidence limits or an expanded 

uncertainty.  

Type A uncertainty estimates are obtained by the statistical 

analysis of a sample of measurements.  Type B uncertainty 

estimates are obtained by heuristic means such as past experience, 

manufacturer specifications, or other information. 

Combined 

Uncertainty 

Combining random and systematic uncertainties has been a 

major issue, often subject to heated debate.  The view 

supported by many data analysts and engineers was to simply 

add the uncertainties linearly (ADD). 

95ADD
xs

u B t
n

= +  

The view supported by statisticians and measurement science 

professionals was to combine them in root sum square (RSS).  

2

2
95RSS

xs
u B t

n
= +

å õ
æ ö
ç ÷

 

Since elemental uncertainties are equal to the square-root of the 

distribution variance, the variance addition rule is used to combine 

uncertainties from different error sources. 

 

To illustrate the variance addition rule, consider the measurement 

of a quantity x that involves two error sources e1 and e2. 

x =  xtrue + e1 + e2  

The uncertainty in x is obtained from 

 
1 2 1 2

1 2 1 2

var( ) var( )

var( ) var( ) 2cov( , )

x trueu x e e e e

e e e e

= + + = +

= + +
 

                                                 
7 Confidence limits and expanded uncertainty are also discussed in section 2.6.1. 
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Topic Pre-GUM GUM 

A compromise was eventually proposed8 in which either 

method could be used as long as the following constraints 

were met: 

 

where the covariance term, cov(e1, e2), is the expected value of the 

product of the deviations of e1 and e2 from their respective means.  

The covariance of two independent variables is zero.  The 

covariance can be replaced with  

 

Topic Pre-GUM GUM 

Combined 

Uncertainty 

(continued) 

 

a. The elemental random uncertainties and the 

elemental systematic uncertainties are 

combined separately. 

b. The total random uncertainty and total 

systematic uncertainty be reported separately. 

c. The method used to combine the total random 

and total systematic uncertainties are stated. 

 

Ironically, it was also recommended that the RSS method be 

used to combine the elemental random uncertainties, si, and 

the elemental systematic uncertainties, Bi. 

1/ 2
2

1

1 K

i
i

s s
n =

= ä
è ø
é ùê ú

           

1/ 2
2

1

K

i
i

B B
=

= ä
è ø
é ùê ú

 

After publication of the GUM, most uncertainty analysis 

references state that the total random and total systematic 

uncertainties also be combined in RSS.  In many instances, 

the Studentôs t-statistic, t95, is set equal to 2 and uRSS is 

computed to be  

1,2 1 2 1 2cov( , )u ur e e=  

where r1,2 is the correlation coefficient for e1 and e2 and  

1 1var( )u e=                  2 2var( )u e= . 

Therefore, the uncertainty in x can be expressed as  

2 2
1 2 1,2 1 22xu u u u ur= + + . 

Since correlation coefficients range from minus one to plus one, 

this expression provides a more general, mathematically rigorous 

method for combining uncertainties.   

 

For example, if r1,2 = 0 (i.e., statistically independent errors), then 

the uncertainties are combined using RSS.  If r1,2 = 1, then the 

uncertainties are added.  If r1,2 = -1, then the uncertainties are 

subtracted.  

                                                 
8 Abernathy, R. B. and Ringhauser, B.: "The History and Statistical Development of the New ASME-SAE-AIAA -ISO Measurement Uncertainty Methodology," 

AIAA/SAE/ASME/ASEE Propulsion Conference, 1985. 
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Topic Pre-GUM GUM 

2

2
2RSS

s
u B

n
= +

å õ
æ ö
ç ÷

 

Unfortunately, this consensus approach does not eliminate 

the problems associated with using expanded uncertainties or 

multiples of standard deviations. 

Degrees of 

Freedom 

Prior to the GUM, there was no way to estimate the degrees 

of freedom for uncertainties due to systematic error.  

Consequently, there was no way to compute the degrees of 

freedom for the combined uncertainty.   

 

Equation G.3 of the GUM  

[ ]

22

2

1 ( ) 1 ( )

2 2 ( )( )

u x u x

u xu x
n

s

-
D

º º
è ø
é ù
ê ú
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Degrees of 

Freedom 

(continued) 

 provides a relationship for computing the degrees of freedom for a 

Type B uncertainty estimate where s2[u(x)] is the variance in the 

uncertainty estimate, u(x), and Du(x) is the uncertainty in the 

uncertainty estimate.9   

 

Since publication of the GUM, a methodology for determining 

s2[u(x)] and computing the degrees of freedom for Type B 

estimates has been developed.10 

 

When uncertainties are combined, it is important to estimate the 

degrees of freedom for the total uncertainty.  The GUM utilizes the 

Welch-Satterthwaite formula to estimate the effective degrees of 

freedom, neff, for the combined uncertainty.  

                                                 
9 This equation assumes that the underlying error distribution is normal. 

10 Castrup, H.: ñEstimating Category B Degrees of Freedom,ò presented at the 2000 Measurement Science Conference, January 21, 2001. See also Appendix D. 



 

7 

Topic Pre-GUM GUM 

4
*

4 4

1

T
eff

n
i i

i i

u

a u
n

n=

=

ä

 

In the above equation, ui and ni are the uncertainties and associated 

degrees of freedom for n error sources, ai are sensitivity 

coefficients and the combined or total uncertainty uT* is computed 

assuming no error source correlations. 

*

2 2

1
T

n

i i
i

a uu
=

= ä  

Confidence 

Limits 

In pre-GUM references, U95 is employed as an equivalent 

95% confidence limit 

95 95x U true value x U- ¢ ¢ + 

The combined or total uncertainty, uT, and degrees of freedom, neff, 

can be used to establish the upper and lower limits that contain the 

true value (estimated by the mean value x ), with some specified 

confidence level, p.  Confidence limits are expressed as  

 

 

Topic Pre-GUM GUM 

Confidence 

Limits 

(continued) 

where 

2

2
95 95

s
U B t

n
= +

å õ
æ ö
ç ÷

 

 / 2, / 2,eff effT Tx t u true value x t ua n a n- ¢ ¢ +  

where a = 1- p and the t-statistic, ta/2neff, is a function of both the 

degrees of freedom and the confidence level. 

 

The GUM introduces an expanded uncertainty, ku, as an 

approximate confidence limit, in which a coverage factor  

k is used.  

T Tx ku true value x ku- ¢ ¢ + 

In most cases, a value of k = 2 is used to approximate a 95% 

confidence level for normally distributed errors. 
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Topic Pre-GUM GUM 

 

To be useful in managing errors, the coverage factor should be 

based on both a confidence level and the degrees of freedom for 

the uncertainty estimate.  This is achieved with the Studentôs t-

statistic, ta/2,n. 

 

Confidence limits and expanded uncertainty are discussed further 

in section 2.6.1. 
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CHAPTER 2:  BASIC CO NCEPTS AND METHODS 
 

A measurement is a process whereby the value of a quantity is estimated.  All measurements are 

accompanied by error.11  Our lack of knowledge about the sign and magnitude of measurement 

error is called measurement uncertainty.  A measurement uncertainty estimate is the 

characterization of what we know statistically about the measurement error.  Therefore, a 

measurement result is only complete when accompanied by a statement of the uncertainty in that 

result. 

 

This chapter describes the basic concepts and methods used to estimate measurement 

uncertainty.12  The general uncertainty analysis procedure consists of the following steps:   

 

1. Define the Measurement Process 

2. Develop the Error Model 

3. Identify the Error Sources and Distributions 

4. Estimate Uncertainties 

5. Combine Uncertainties 

6. Report the Analysis Results 

 

The following sections discuss these analysis steps and clarify the relationship between 

measurement error and uncertainty.  A discussion on using uncertainty estimates to compute 

confidence intervals and expanded uncertainties is also included.   

 

2.1 Define the Measurement Process 

The first step in any uncertainty analysis is to identify the physical quantity that is measured.  

This quantity, sometimes referred to as the ñmeasurand,ò may be a directly measured value or 

derived from the measurement of other quantities.  The former type of measurements are called 

ñdirect measurements,ò while the latter are called ñmultivariate measurements.ò 

 

For multivariate measurements, it is important to develop an equation that defines the 

mathematical relationship between the derived quantity of interest and the measured quantities.  

For a case involving three measured quantities x, y, and z, this equation can be written  

 

  ( ), ,q f x y z=  (2-1)  

where 

 q  =  quantity of interest 

 f  =  mathematical function that relates q to measured quantities x, y, and z. 

 

At this initial stage of the analysis, it is also important to describe the test setup, environmental 

conditions, technical information about the instruments, reference standards, or other equipment 

used and the procedure for obtaining the measurement(s).  This information will be used to 

identify measurement process errors and estimate uncertainties. 

 

                                                 
11 The relationship between a measured quantity and measurement error is defined in section 2.2. 

12 The methodology of the GUM is employed throughout this document.  The same applies to specific procedures and techniques 

unless otherwise indicated. 
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2.2 Develop the Error Model 

An error model is an algebraic expression that defines the total error in the value of a quantity in 

terms of all relevant measurement process or component errors.  The error model for the quantity 

q defined in equation (2-1) is  

 

  q x x y y z zc c ce e e e= + +  (2-2)  

where 

 eq = error in q 

 ex = error in the measured quantity x 

 ey = error in the measured quantity y 

 ez = error in the measured quantity z 

 

and cx, cy and cz are sensitivity coefficients that determine the relative contribution of the errors 

in x, y and z to the total error in q.  The sensitivity coefficients are defined below.13 

 

x

q
c

x

µå õ
=æ ö
µç ÷

 , y

q
c

y

å õµ
=æ ö
µç ÷

 , z

q
c

z
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=æ ö
µç ÷

 

 

In any given measurement scenario, each measured quantity is also accompanied by 

measurement error.  The basic relationship between the measured quantity x and the 

measurement error ex is given in equation (2-3). 

 

 x  =  xtrue  +  ex (2-3) 

 

The error model for ex is the sum of the errors encountered during the measurement process and 

is expressed as 

  ex = e1 + e2 + ... + ek (2-4) 

 

where the numbered subscripts signify the different measurement process errors.   

 

2.3 Identify Measurement Error s and Distributions 

Measurement process errors are the basic elements of uncertainty analysis.  Once these 

fundamental error sources have been identified, then uncertainty estimates for these errors can be 

developed. 

 

The errors most often encountered in making measurements include, but are not limited to the 

following: 

 

¶ Reference Attribute Bias 

¶ Repeatability 

¶ Resolution Error 

¶ Operator Bias 

¶ Environmental Factors Error 

¶ Computation Error 

                                                 
13 Detailed analysis procedures for multivariate measurements are presented in Chapter 6. 
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Reference Attribute Bias 

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test 

(UUT) attributes by comparison to corresponding measurement reference attributes.  The error in 

the value of a reference attribute, at any instant in time, is composed of a systematic component 

and a random component.  Reference attribute bias is the systematic error component that 

persists from measurement to measurement during a measurement session.14  Attribute bias 

excludes resolution error, random error, operator bias and other error sources that are not 

properties of the attribute. 

 

Repeatability 

Repeatability is a random error that manifests itself as differences in measured value from 

measurement to measurement during a measurement session.  It is important to note that, random 

variations in a measured quantity or UUT attribute are not separable from random variations in 

the reference attribute or random variations due to other error sources.  

 

Resolution Error 

Reference attributes and/or UUT attributes may provide indications of sensed or stimulated 

values with some finite precision.  The smallest discernible value indicated in a measurement 

comprises the resolution of the measurement.  For example, a voltmeter may indicate values to 

four, five or six significant digits.  A tape measure may provide length indications in meters, 

centimeters or millimeters.  A scale may indicate weight in terms of kg, g, mg or mg. 

 

The basic error model for resolution error, eres, is 

 

eres =  xindicated ï xsensed 

 

where xsensed is a ñmeasuredò value detected by a sensor or provided by a stimulus and xindicated is 

the indicated representation of xsensed. 

 

Operator Bias 

Errors can be introduced by the person or operator making the measurement.  Because of the 

potential for human operators to acquire measurement information from an individual 

perspective or to produce a systematic bias in a measurement result, it sometimes happens that 

two operators observing the same measurement result will systematically perceive or produce 

different measured values.   

 

In reality, operator bias has a somewhat random character due to inconsistencies in human 

behavior and response.  The random contribution is included in measurement repeatability and 

the systematic contribution is the operator bias. 

 

Environmental Factors Error 

Errors can result from variations in environmental conditions, such as temperature, vibration, 

humidity or stray emf.  Additional errors are introduced when measurement results are corrected 

for environmental conditions.  For example, when correcting a length measurement for thermal 

                                                 
14 A measurement session is considered to be an activity in which a measurement or sample of measurements is taken under fixed 

conditions, usually for a period of time measured in seconds, minutes or, at most, hours. 
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expansion, the error in the temperature measurement will introduce an error in the length 

correction.  The uncertainty in the correction error is a function of the uncertainty in the error in 

the environmental factor.15 

 

Computation Error 

Data processing errors result from computation round-off or truncation, numerical interpolation 

of tabulated values, or the use of curve fit equations.  For example, in the regression analysis of a 

range of values, the standard error of estimate quantifies the difference between the measured 

values and the values estimated from the regression equation.16  

 

A regression analysis that has a small standard error of estimate has data points that are very 

close to the regression line.  Conversely, a large standard error of estimate results when data 

points are widely dispersed around the regression line.  However, if another sample of data were 

collected, then a different regression line would result.  The standard error of the forecast 

accounts for the dispersion of various regression lines that would be generated from multiple 

sample sets around the true population regression line.  The standard error of forecast is a 

function of the standard error of estimate and the measured value and should be used when 

estimating uncertainty due to regression error.  

 

Repeatability and Resolution Error 

In some measurement situations, repeatability may be considered to be a manifestation of 

resolution error.  The following cases should be considered when determining whether or not to 

include repeatability and resolution as separate error sources. 

 

Case 1 ï  Values obtained in a random sample of measurements exhibit just two values and the 

difference between these values is equal to the smallest increment of resolution.  In this case, it 

can be concluded that ñbackground noiseò random variations are occurring that are beyond the 

resolution of the measurement.  Consequently, repeatability cannot be identified as a separate 

error source because the apparent random variations are due to resolution error.  Accordingly, the 

uncertainty due to resolution error should be included in the total measurement uncertainty but 

the uncertainty due to repeatability should not be included. 

 

Case 2 ï Values obtained in a random sample vary in magnitude substantially greater than the 

smallest increment of resolution.  In this case, repeatability cannot be ignored as an error source.  

In addition, since each sampled value is subject to resolution error, it should also be included.  

Accordingly, the total measurement uncertainty must include contributions from both 

repeatability uncertainty and resolution uncertainty. 

 

Case 3 ï Values obtained in a random sample of measurements vary in magnitude somewhat 

greater than the smallest increment of resolution but not substantially greater.  In this case, error 

due to repeatability is partly separable from resolution error, but it becomes a matter of opinion 

as to whether to include repeatability and resolution error in the total measurement error.  Until a 

clear solution to the problem is found, it is best to include both repeatability and resolution error. 

 

In summary, if measurement repeatability is smaller than the display resolution, only resolution 

                                                 
15 In the length correction scenario, error in the coefficient of thermal expansion may also need to be taken into account.  

16 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984. 
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error should be included in the uncertainty analysis.  If measurement repeatability is larger than 

the display resolution, then both error sources should be included in the uncertainty analysis. 

 

2.3.1  Error Distributions 

Recall from the GUM methodology discussed in Chapter 1, that measurement uncertainty is the 

square root of the variance of the error distribution.17  To better understand the relationship 

between measurement error and measurement uncertainty, measurement error distributions must 

be discussed in some detail.  

 

An important aspect of the uncertainty analysis process is the fact that measurement errors can 

be characterized by probability distributions.  This is stated in Axiom 1.   

 

Axiom 1  -  Measurement errors are random variables that follow 

probability distribution s.   

 

The probability distribution for a type of measurement error is a mathematical description that 

relates the frequency of occurrence of values to the values themselves.  Error distributions 

include, but are not limited to normal, lognormal, uniform (rectangular), triangular, quadratic, 

cosine, exponential, U-shaped and trapezoidal. 

 

Each distribution is characterized by a set of statistics.  The statistics most often used in 

uncertainty analysis are the mean or mode and the standard deviation.  With the lognormal 

distribution, a limiting value and the median value are also used.  Probability distributions used 

in measurement applications are described in Appendix B.   Probability density functions for 

selected distributions are summarized in Table 2-1. 

 

Table 2-1.  Probability Distributions 

Distribution Distribution Plot Probability Density Function 
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where q is a physical limit for e, m is the distribution 

median, and l is a shape parameter. 

                                                 
17 The basis for the mathematical relationship between error and uncertainty is presented in section 2.4. 
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Distribution Distribution Plot Probability Density Function 
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where ± a are the minimum distribution bounding limits. 
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where ± a are the minimum distribution bounding limits. 
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where ± a are the minimum distribution bounding limits. 

 

2.3.2 Choosing the Appropriate Distribution  

The normal and lognormal distributions are relevant to most real world measurement 

applications.  Other distributions are also possible, such as the uniform, triangular, quadratic, 
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cosine, exponential, and U-shaped, although they have limited applicability.  Some 

recommendations for selecting the appropriate distribution for a particular measurement error 

source are as follows:   

 

a. The normal distribution should be applied as the default distribution, unless 

information to the contrary is available. 

 

b. Apply the lognormal distribution if it is suspected that the distribution of the value 

of interest is skewed (i.e., non-symmetric) and bounded on one side.18  

 

c. If 100% containment has been observed and minimum bounding limits are 

known, then the following is recommended: 

 

i. Apply the cosine distribution if the value of interest has been subjected to 

random usage or handling stress, and is assumed to possess a central tendency.  

 

ii.  Apply the quadratic distribution if it is suspected that values are more evenly 

distributed.   

 

iii.  The triangular distribution may be applicable, under certain circumstances, 

when dealing with parameters following testing or calibration.  It is also the 

distribution of the sum of two uniformly distributed errors with equal means 

and bounding limits. 

 

iv. The U-shaped distribution is applicable to quantities controlled by feedback 

from sensed values, such as automated environmental control systems. 

 

v. Apply the uniform distribution if the value of interest is the resolution 

uncertainty of a digital readout.  This distribution is also applicable to 

estimating the uncertainty due to quantization error and the uncertainty in RF 

phase angle. 

 

More specific criteria for correctly selecting the uniform distribution and example cases that 

satisfy this criteria are given in Appendix B.   

 

2.4 Estimate Uncertainties 

As previously discussed, an error distribution tells us whether an error or a range of errors is 

likely or unlikely to occur.  It provides a mathematical description of how likely we are to 

experience (measure) certain values.  With a basic understanding of error distributions and their 

statistics, we can estimate uncertainties.19  We begin with the statistical quantity called the 

variance. 

 

2.4.1  Distribution Variance  

Variance is defined as the mean square dispersion of the distribution about its mean value. 

                                                 
18 In using the normal or lognormal distribution, some effort must be made to estimate a containment probability.  This is 

discussed in more detail in Chapter 3.  

19 To ensure validity, the distribution selected to estimate uncertainty for a given error source should provide the most realistic 

statistical characteristics. 
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var(x)  =   Mean Square Dispersion in x. 

 

If a variable x follows a probability distribution, described by a probability density function f(x), 

then the mean square dispersion or variance of the distribution is given by  
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where mx is the mean of x, sometimes referred to as the expectation value for x.  In speaking of 

variations in x that are the result of measurement error, we take mx to be the true value of the 

quantity being measured.  From equation (2-3), we can write ex = x ï mx, and equation (2-5) can 

be expressed as 
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where x(ex) = ex + mx.  Because of the form of this definition, the variance is also referred to as 

the mean square error.   

 

Equation (2-6) shows that, if a quantity x is a random variable representing a population of 

measurements, then the variance in x is just the variance in the error in x 

 

  var(x)  = var(xtrue + ex)  = var(ex). (2-7) 

 

By definition, the standard deviation is the square root of the distribution variance or mean 

square error.  The uncertainty in a measurement quantity is equivalent to the standard deviation 

of the error distribution.  This leads to Axiom 2. 

 

Axiom 2  -  The uncertainty in a measurement is the square root of  

   the variance in the measurement error. 

 

Axiom 2 provides the crucial link between measurement error and measurement uncertainty.  If x 

is a measured value, then 
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 (2-8) 

 

Equation (2-8) provides a third axiom that forms a solid and productive basis upon which 

uncertainties can be estimated. 

 

Axiom 3  -  The uncertainty in a measured value is equal to the 

uncertainty in the measurement error. 
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Axiom 3, together with Axioms 1 and 2, allows the computation and combination of 

measurement uncertainty to be rigorously carried out by  

 

1. drawing attention to what it is that we are uncertain of in making measurements, 

and 

2. allowing for the development of measurement uncertainty models for 

measurement scenarios of any complexity. 

 

There are two approaches to estimating the variance of an error distribution and, thus, the 

uncertainty in the measurement error.  Type A estimates involve data sampling and analysis.  

Type B estimates use technical knowledge or recollected experience of measurement processes.  

The basic methods used to make Type A and Type B uncertainty estimates are presented in 

Chapter 3.  

 

2.5 Combine Uncertainties 

Axiom 2 states that the uncertainty in the value of an error is equal to the square root of the 

variance of the error distribution.  As a consequence, we can apply the variance addition rule to 

obtain a method for correctly combining uncertainties from different error sources. 

 

2.5.1 Variance Addition Rule ï Direct Measurements   

For purposes of illustration, consider a measured quantity x  =  xtrue  +  ex.  We know that the total 

error, ex, consists of measurement process errors 

 

 ex  =  e1 + e2 + é + ek = 
1

k

i
i

e
=
ä  

 

where ei represents the ith error source and k is the total number of errors.   

 

Applying the variance addition rule to ex  yields 

  

 var(ex) = var(e1 + e2 + é + ek) (2-9) 

  =  var(e1) + var(e2) + é + var(ek) +  2cov(e1, e2) + 

   2cov(e1, e3) + é + 2cov(ek-2, ek) + 2cov(ek-1, ek) 

  = 
1

,
1 1 1

var( ) 2 cov( )
k k k

i i j
i i j i

e e e
-

= = = +

+ä ä ä  

 

where cov(ei, ej) is the covariance between measurement process errors.  Covariance is defined 

in Section 2.5.3.   

 

2.5.2  The Variance Addition - General Model 

Now consider a more general case of the variance addition rule.  For illustration, consider a 

quantity z defined from the following equation  

 

z  =  ax + by 

   

where x and y are measured quantities and the coefficients a and b are constants.  Using equation 
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(2-3), 

 

 z   =  a(xtrue + ex) + b(ytrue + ey) 

      =  axtrue + bytrue + aex + bey 

  = ztrue + ez 
where 

 ztrue =  axtrue + bytrue  

and 

 ez =  aex + bey. 
 

The variance of ez is expressed as 

  

 var(ez) = var(aex + bey) 

  =  a2 var(ex) + b2 var(ey) + 2ab cov(ex, ey) 
 

where the last term is the covariance between ex and ey.  From Axiom 2, var(ez) is expressed as  

 

   
( ) 2

2 2 2 2

var

2 cov( , )

z

x y

z

x y

u

a u b u ab

e

e e

e

e e

=

= + +
 (2-10) 

 

where 
x

ue  and 
y

ue  are the uncertainties in ex and ey, respectively.   

 

2.5.3   Error Correlations  ï Direct Measurements 

If two variables e1 and e2 are described by a joint probability density function f(e1, e2), then the 

covariance of e1 and e2 is given by 

 

  1 2 1 1 2 1 2 2cov( , ) ( , )d f de e e ee e e e¤ ¤
-¤ -¤

=ñ ñ . (2-11) 

 

The covariance of two random variables is a statistical assessment of their mutual dependence.  

Because covariances can have inconvenient physical dimensions, they are rarely used explicitly.  

Instead, we use the correlation coefficient, 
i jeer , which is defined as 
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where 
i

ue and 
j

ue  are the ith and jth measurement process uncertainties.  The correlation 

coefficient provides an assessment of the relative mutual dependence of two random variables.  

The correlation coefficient is a dimensionless number ranging in value from -1 to 1. 

 

If we recall Axiom 2, equation (2-9) can be expressed as   
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2.5.4  Cross-Correlations between Error Components 

From equations (2-12) and (2-13),  the correlation coefficient for ex and ey is 
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and equation (2-10) becomes  
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Equation (2-15) can be generalized to cases where there are k measured quantities and 

corresponding error components e1, e2, ..., ek for these quantities. 
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 (2-16) 

 

where 
r

ue  and 
q

ue  are the total uncertainties for the rth and qth error components, respectively 

and rrq is the cross-correlation between these error components.   

 

Each error component is comprised of measurement process errors, such as measurement 

reference bias, repeatability, resolution error, etc.  Hence, we decompose er as  

 

 er = er,1 + er,2 + é + er,l (2-17)  

 

where l denotes the number of measurement process errors. 

 

The cross-correlation coefficient between measurement process errors for the error components 

er,i and eq,j, is denoted by 
, ,r i q je er  and written 
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where 
,r i

ue  and 
,q j

ue  are the measurement process uncertainties for the rth and qth error 

components, respectively, and 

 

 
, ,var( )

r i r iue e= . (2-19) 

 

Returning to equation (2-16), the correlation coefficient for 
r

ue  and 
q

ue  is  
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where the total number of process uncertainties for the rth and qth measured quantities are l and 

m, respectively.  As equation (2-20) shows, the correlation coefficient, rrqij, accounts for cross-

correlations between measurement process uncertainties for the rth and qth error components. 

 

2.5.5 Combined Uncertainty 

The variance addition rule provides a logical approach for computing the overall, combined 

uncertainty that accounts for correlations between error sources.  Given equations (2-16) and  

(2-20), the total uncertainty, uT, can be generally expressed as 

 

  
, , , ,

1
2 2

1 1 1 1 1

2
r i q j r i q jr

k k k l m

T r r q
r r q r i j

u a u a a u ue e e ee
r

-

= = = + = =

= +ä ä ä ä ä  (2-21) 

 

From the above equation, one can surmise that uncertainties are not always combined using the 

root sum square (RSS) method. 

 

2.5.6 Establishing Correlations 

To assess the impact of correlated errors on the combined uncertainty, consider the measurement 

of a quantity x that involves two error sources e1 and e2  
 

 x =  xtrue + e1 + e2.  

 

From Axioms 2 and 3 and the variance addition rule, the uncertainty in x is obtained from 
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2 2
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The correlation coefficient, r1,2, for two error sources can range in value from -1 to +1.   

 

Statistically Independent Error Sources 

If the two error sources are statistically independent, then r1,2 = 0 and 2 2
1 2xu u u= + .  

Therefore, uncertainties of statistically independent error sources are combined using the RSS 

method.   
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Strongly Correlated Error Sources 

If r1,2 = 1, then ( )
22 2

1 2 1 2 1 2 1 22xu u u u u u u u u= + + = + = +.  Therefore, the uncertainties are 

combined linearly.   

 

When two error sources are strongly correlated and compensate for one another, then  

r1,2 = -1 and ( )
22 2

1 2 1 2 1 2 1 22xu u u u u u u u u= + - = - = -.  Therefore, the combined 

uncertainty is the absolute value of the difference between the individual uncertainties. 

 

There typically aren't any correlations between measurement process errors for a given quantity.  

In general, it is safe to assume that there are no correlations between the following measurement 

process errors: 

 

¶ Repeatability and Reference Attribute Bias (rran,bias = 0) 

¶ Repeatability and Operator Bias (rran,oper = 0) 

¶ Reference Attribute Bias and Resolution Error (rbias,res = 0) 

¶ Reference Attribute Bias and Operator Bias (rbias,oper = 0) 

¶ Operator Bias and Environmental Factors Error (roper,env = 0) 

¶ Resolution Error and Environmental Factors Error (rres, env = 0) 

¶ Digital Resolution Error and Operator Bias (rres, oper = 0) 

 

Cross-Correlations 

Instances may arise where measurement process errors for different error components are 

correlated.  In this case, equation (2-20) must be applied to account for cross-correlations 

between measurement components.  Accounting for cross-correlations is discussed further in 

Chapter 6. 

 

2.5.7 Degrees of Freedom 

Generally speaking, degrees of freedom signifies the amount of information or knowledge that 

went into an uncertainty estimate.  Therefore, when uncertainties are combined, we need to know 

the degrees of freedom for the total uncertainty.  Unfortunately, the degrees of freedom for a 

combined uncertainty estimate is not a simple sum of the degrees of freedom for each 

uncertainty component.   

 

The effective degrees of freedom, neff, for the total uncertainty, uT, resulting from the 

combination of uncertainties ui and associated degrees of freedom, ni, for n error sources can be 

estimated via the Welch-Satterthwaite formula given in equation (2-22) 
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where uT* is the total or combined uncertainty computed assuming no error correlations.   
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Note:  While the Welch-Satterthwaite formula is applicable for statistically 

independent, normally distributed error sources, it can usually be thought of as a 

fair approximation in cases where error sources are not statistically independent. 

 

Determining the degrees of freedom for Type A and Type B uncertainty estimates is discussed in 

Chapter 3. 

 

2.6 Report the Analysis Results 

Reporting the results of an uncertainty analysis is an important aspect of measurement quality 

assurance.  Therefore, the analysis results must be reported in a way that can be readily 

understood and interpreted by others. 

 

Section 7 of the GUM recommends that the following information be included: 

 

1. The estimated value of the quantity of interest (measurand) and its combined 

uncertainty and degrees of freedom. 

2. The functional relationship between the quantity of interest and the measured 

components, along with the sensitivity coefficients.  

3. The value of each measurement component and its combined uncertainty and 

degrees of freedom 

4. A list of the measurement process uncertainties and associated degrees of freedom 

for each component, along with a description of how they were estimated. 

5. A list of applicable correlation coefficients, including any cross-correlations 

between component uncertainties.  

 

It is also a good practice to provide a brief description of the measurement process, including the 

procedures and instrumentation used, and additional data, tables and plots that help clarify the 

analysis results.   

 

When reporting the uncertainty in a measured value, it is often desirable to include confidence 

limits or expanded uncertainty.  Therefore, some discussion about confidence limits and 

expanded uncertainty is provided in the following section. 

 

2.6.1 Confidence Limits and Expanded Uncertainty 

In statistics, we make inferences about population parameters, such as the mean value and 

standard deviation, through the analysis of sampled data or other heuristic information.  

Confidence limits provide a numerical interval which contains the population parameter of 

interest with some probability.20  Confidence limits are computed using either the normal or 

Studentôs t distribution.21   

                                                 
20 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc., 1984. 

21 The Studentôs t distribution is a symmetric distribution that approaches the normal distribution as the degrees of freedom 

approach infinity. 
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In reporting measurement results, the uncertainty, u, and its associated degrees of freedom, n, 

can be used to establish confidence limits that contain the true value, m (estimated by a sample 

mean value x ), with some specified confidence level or probability, p.  In this application, the 

confidence limits are expressed as  

 

 / 2, / 2,x t u x t ua n a nm- ¢ ¢ +  (2-24) 

 

where the multiplier is the t-statistic, ta/2,n, and a = 1- p is the significance level.  Values for ta/2,n 

are obtained from the percentiles of the probability density function for the Studentôs t 

distribution. 

 

As seen from equation (2-24), the width of the confidence limits or interval is dependent on three 

factors:  

 

1. the confidence level  

2. the estimated uncertainty  

3. the degrees of freedom.  

 

The development and application of confidence limits are discussed further in Chapters 3 and 4.  

 

The GUM defines the term expanded uncertainty as "the quantity defining an interval about the 

result of a measurement that may be expected to encompass a large fraction of the distribution of 

values that could reasonably be attributed to the measurand."   

 

This means that the expanded uncertainty is basically defined as an interval that is expected to 

contain the true value of the measurand.  In this context, the expanded uncertainty, ku, is offered 

as approximate confidence limits, in which the coverage factor, k, is used in place of the  

t-statistic 

 

 truex ku x x ku- ¢ ¢ +. (2-25) 

 

The introduction of the expanded uncertainty was meant to clarify the concept of uncertainty, but 

confusion over and misapplication of this term persisted since the GUM was first released.  To 

mitigate this problem, the GUM also introduced the term "standard uncertainty" to help 

distinguish uncertainty from expanded uncertainty.  However, in practice, the term expanded 

uncertainty and uncertainty are often used interchangeably.  This, of course, can lead to incorrect 

inferences and miscommunications.   

 

Note:  The use of the term uncertainty to represent an expanded uncertainty is not 

a recommended practice. 

 

The use of coverage factors in lieu of the t-statistic emerged as an artifice to ñemulateò 

confidence limits in cases where the total uncertainty is a Type B estimate or is composed of 

both Type A and Type B estimates. 
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Not being a statistical quantity in the purest sense, a Type B estimate was not considered to be 

associated with definable degrees of freedom that could be regarded as quantifying the amount of 

information used in producing the estimate.  Accordingly, if used alone or combined with a Type 

A estimate, the result was not viewed as being a true statistic. 

 

As is shown in Appendix D, we now have the means to estimate the degrees of freedom for  

Type B estimates in such a way that they can be considered on an approximately equal statistical 

footing with Type A estimates.  Consequently, Type B uncertainty estimates can be used to 

determine confidence limits, conduct statistical tests, evaluate decisions, etc. 
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CHAPTER 3:  ESTIMATI NG UNCERTAINTY 
 

There are two approaches to estimating measurement uncertainty.  Type A uncertainty estimates 

involve data sampling and analysis. Type B uncertainty estimates use engineering knowledge or 

recollected experience of measurement processes.  This chapter discusses sample statistics used 

to make Type A uncertainty estimates and heuristic methods used to make Type B uncertainty 

estimates. 

 

3.1 Type A Estimates 

A Type A uncertainty estimate is defined as an estimate obtained from a sample of data.  Data 

sampling involves making repeat measurements of the quantity of interest.  It is important that 

each repeat measurement is independent, representative and taken randomly. 

 

Random sampling is a cornerstone for obtaining relevant statistical information.  Therefore, Type 

A estimates usually apply to the uncertainty due to repeatability or random error.  The data used 

for Type A uncertainty estimates typically consist of sampled values.  However, the data may be 

comprised of sampled mean values or sampled cells.  The computed statistics vary slightly 

depending on the sample type.   

 

Statistical analysis of sampled values will be presented herein for illustration.  Statistical analysis 

methods for all three sample types are presented in Appendix C, along with topics on outlier 

removal and normality testing.    

 

3.1.1  Statistics for Sampled Values 

Because the data sample is drawn from a population22 of values, we make inferences about the 

population from certain sample statistics and from assumptions about the way the population of 

values is distributed.  A sample histogram can aid in our attempt to picture the population 

distribution. 

 

 

Figure 3-1.  Repeatability Distribution  

 

The normal distribution is ordinarily assumed to be the underlying distribution for repeatability 

or random error.  When samples are taken, the sample mean and the sample standard deviation 

are computed and assumed to represent the mean and standard deviation of the population 

                                                 
22 In statistics, a population is the total set of possible values for a random variable under consideration. 
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distribution.  However, this equivalence is only approximate.  To account for this, the Student's 

t distribution is used in place of the normal distribution to compute confidence limits around the 

sample mean.  

 

The sample mean, x , is obtained by taking the average of the sampled values.  The average 

value is computed by summing the values sampled and dividing them by the sample size, n.  

 

 ( )1 2
1

1 1
...

n

n i
i

x x x x x
n n =
= + + + =ä  (3-1) 

 

The sample mean can be thought of as an estimate of the value that we expect to get when we 

make a measurement.  This "expectation value" is called the population mean, which is 

expressed by the symbol m. 
 

The sample standard deviation provides an estimate of the population standard deviation.  The 

sample standard deviation, sx, is computed by taking the square root of the sum of the squares of 

sampled deviations from the mean divided by the sample size minus one. 
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 (3-2) 

 

The value n-1 is the degrees of freedom for the estimate, which signifies the number of 

independent pieces of information that go into computing the estimate.  Absent any systematic 

influences during sample collection, the sample standard deviation will approach its population 

counterpart as the sample size or degrees of freedom increases.  The degrees of freedom for an 

uncertainty estimate is useful for establishing confidence limits and other decision variables. 

  

The sample standard deviation provides an estimate of the repeatability or random error 

population standard deviation,
,x ranes .  As discussed in Chapter 2, Section 2.4, the standard 

deviation of an error distribution is equal to the square root of the distribution variance. 

 

 
, ,var( )

x ran x ranes e=  (3-3) 

 

It has also been shown that  

 
, ,var( ).

x ran x ranue e=  (3-4) 

 

Therefore, the sample standard deviation provides an estimate of the uncertainty due to 

repeatability or random error.23 

 

 
,

.
x ran xu se @  (3-5) 

 

If the objective of the uncertainty analysis is to characterize a given single measurement 

                                                 
23 The uncertainty due to repeatability or random error in measurement is estimated from a sample of measurements taken over a 

time period short enough to eliminate variations due to systematic drift or other factors. 



 

27 

performed under specific circumstances, as in developing a statement of capability, then equation 

(3-5) should be used. 

 

If the estimate is intended to represent the uncertainty in the mean value due to repeatability or 

random error, then the variance of the sample mean is evaluated. 
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 (3-6) 

 

An important criterion for random sampling is that each of the sampled values must be 

statistically independent of one another.  The variance of a sum of independent variables is the 

sum of the variances.  Therefore, equation (3-6) becomes 
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Since each xi is sampled from a population with a variance equal to 2xs , then 2var( )i xx s=  and 
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It has been shown that the population standard deviation sx is estimated with the sample standard 

deviation sx.  Therefore, the uncertainty in the mean value can be estimated to be 

 

 
, ,var( )

x ran

x
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u
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e e= @  (3-9) 

 

Once estimates of the sample mean and standard deviation have been obtained, and the degrees 

of freedom have been noted, it becomes possible to compute limits that bound the sample mean 

with some specified level of confidence.  These limits are called confidence limits and the degree 

of confidence is called the confidence level. 

 

Confidence limits can be expressed as multiples of the sample standard deviation.  For normally 

distributed samples, this multiple is called the t-statistic.  The value of the t-statistic is 

determined by the desired percent confidence level, C, and the degrees of freedom, n, for the 

sample standard deviation.   

 

Confidence limits for a single measured value, x, are given by 

 

 / 2, xx t sa n°
 (3-10) 

 

and confidence limits for the mean or average, x , of a sample of measured values are given by 
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 / 2,
xs

x t
n

a n°  (3-11) 

 

where a = (1 - C/100) and n = n - 1. 

 

Comparison of equations (3-10) and (3-11) shows that confidence limits about a sample mean 

value are much smaller than for a single measured value.  This should be expected since, with a 

sample mean, we have more information and a greater expectation of the sample mean value 

being closer to the population mean.  

 

3.2 Type B Estimates 

In some cases, we must attempt to quantify the statistics of measurement error distributions by 

drawing on our recollected experience concerning the values of measured quantities or on our 

knowledge of the errors in these quantities.24  Estimates made in this manner are called heuristic 

or Type B estimates. 

 

Uncertainty estimates for measurement process errors resulting from reference attribute bias, 

display resolution, operator bias, computation and environmental factors are typically determined 

heuristically via containment limits and containment probabilities.   

 

As discussed in Chapter 2, measurement errors can be described by a variety of probability 

distributions.  Of these, the normal and lognormal distributions provide the most realistic 

statistical representation of measurement errors.  Therefore, it is prudent to detail the 

development of uncertainty estimates for these distributions. Uncertainty estimates for other 

distributions are discussed in Section 3.2.5. 

 

Computing the degrees of freedom for Type B estimates is discussed in Section 3.2.3.  Applying 

the Studentôs t distribution for estimating uncertainties with finite degrees of freedom is 

discussed in Section 3.2.4.  

 

3.2.1  Normal Distribution  

If the measurement error is normally distributed, then the uncertainty is computed from  
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 (3-12) 

 

where ° L are the containment limits, p is the containment probability, and F-1() is the inverse 

normal distribution function.25 

 

Containment limits may be taken from manufacturer tolerance limits, stated expanded 

uncertainties obtained from calibration records or certificates, or statistical process control limits.  

Containment probability can be obtained from service history data, for example, as the number 

                                                 
24  Information or experience obtained from previous measurement data, general knowledge about the behavior, properties or 

characteristics of materials or instruments, manufacturer specifications, certificates or other calibration history data, reference 

data from handbooks, etc.   

25 The inverse normal distribution function can be found in statistics texts and in most spreadsheet programs.  
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of observed in-tolerances, nin-tol, divided by the number of calibrations, N. 

 

in-tol% 100%
n

C
N

=  

 

3.2.2  Lognormal Distribution  

The lognormal distribution is often used to estimate uncertainty when the error containment 

limits are asymmetric.  The uncertainty is computed from  

 

 
2 2/ 2| | 1u m q e el l= + - (3-13) 

 

where q is a physical limit for error the distribution,  m is the population median and l is the 

shape parameter.  The quantities m, q and l are obtained by numerical iteration, given 

containment limits and an associated containment probability. 

 

3.2.3   Type B Degrees of Freedom 

In equation (3-9), the degrees of freedom are assumed to be infinite.  However, we know that 

heuristic estimates are not based on an "infinite" amount of knowledge.  As with Type A 

uncertainty estimates, the degrees of freedom quantifies the amount of information that goes into 

the Type B uncertainty estimate and is useful for establishing confidence limits and other 

decision variables. 

 

Therefore, if there is an uncertainty in the containment limits (e.g., °L ° DL) or the containment 

probability (e.g., °p ° Dp), then it becomes imperative to estimate the degrees of freedom.   

 

Annex G of the GUM provides a relationship for computing the degrees of freedom for a Type B 

uncertainty estimate 
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where s2[u(x)] is the variance in the uncertainty estimate, u(x), and Du(x) is the uncertainty in the 

uncertainty estimate.26  Hence, the degrees of freedom for a Type B estimate is inversely 

proportional to the square of the ratio of the uncertainty in the uncertainty divided by the 

uncertainty.   

 

While this approach is intuitively appealing, the GUM offers no advice about how to determine 

s2[u(x)] or Du(x).  Since the publication of the GUM, a methodology for determining s2[u(x)] 

and computing the degrees of freedom for Type B estimates has been developed. 27   This 

methodology is outlined in Appendix D. 

 

                                                 
26 This equation assumes that the underlying error distribution is normal. 

27 Castrup, H.: ñEstimating Category B Degrees of Freedom,ò presented at the 2000 Measurement Science Conference, January 

21, 2001.  
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3.2.4  Studentôs t Distribution  

Once the containment limits, containment probability and the degrees of freedom have been 

established, we can estimate the standard deviation or uncertainty of the distribution of interest. 

To do this, we use the Studentôs t distribution and construct a t-statistic based on the containment 

probability and degrees of freedom.   

 

The uncertainty estimate is then obtained by dividing the containment limit by the t-statistic, 

according to equation (3-15). 

 

 
/ 2,

L
u

ta n

=  (3-15) 

 

3.2.5  Other Distributions  

Although the normal, lognormal and Studentôs t distributions are most often used to estimate 

uncertainty, other distributions also have limited applicability.  As discussed in Chapter 2, many 

of these distributions are described by minimum bounding limits, ° a and 100% containment 

probability (i.e., p = 1). 

 

Uncertainty equations for selected distributions are summarized in Table 3-1.  Equations for 

additional distributions are provided in Appendix B.  

 

Table 3-1.  Uncertainty Equations for Selected Distributions 

Distribution Distribution Plot Uncertainty Equation 

Quadratic 
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where ° a are the minimum bounding limits. 

Cosine 

 

2

6
1

3

a
ue

p
= -  

 
where ° a are the minimum bounding limits. 
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Distribution Distribution Plot Uncertainty Equation 

Triangular 
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where ° a are the minimum bounding limits. 

U-Shaped 

 

2

a
ue=  

 
where ° a are the minimum bounding limits. 
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CHAPTER 4:  INTERPRETING AND APPLYING 
EQUIPMENT SPECIFICATIONS 
 

Manufacturer specifications are an important element of cost and quality control for testing, 

calibration and other measurement processes.  They are used for equipment selection or 

establishing equipment substitutions for a given measurement application.  In addition, 

manufacturer specified tolerances are used to compute test uncertainty ratios and estimate bias 

uncertainties.  

 

Measuring and test equipment (MTE) are periodically calibrated to determine if they are 

performing within manufacturer specified tolerance limits.  In fact, the elapsed-time or interval 

between calibrations is often based on in-tolerance or out-of-tolerance data acquired from 

periodic calibrations.  Therefore, it is important that manufacturer specifications are properly 

interpreted and applied.   

 

This chapter discusses how manufacturer specifications are obtained, interpreted and used to 

assess instrument performance and reliability.  Recommended practices and illustrative examples 

are given for the application to uncertainty estimation.  An in-depth discussion about developing, 

verifying and reporting MTE specifications can be found in NASA Measurement Quality 

Assurance Handbook - Annex 2 Measuring and Test Equipment Specifications. 

 

4.1 Measuring and Test Equipment 

Before we delve into defining and interpreting specifications, it is important to clarify what 

constitutes MTE.  For the purposes of uncertainty analysis, MTE include artifacts, instruments, 

sensors and transducers, signal conditioners, data acquisition units, data processors and output 

displays.   

 

4.1.1   Artifacts  

Artifacts constitute passive devices such as mass standards, standard resistors, pure and certified 

reference materials, gage blocks, etc.  Accordingly, artifacts have stated outputs or nominal 

values and associated specifications. 

 

4.1.2 Instruments 

Instruments constitute equipment or devices that are used to measure and/or provide a specified 

output. They include, but are not limited to, oscilloscopes, wave and spectrum analyzers, 

Josephson junctions, frequency counters, multimeters, signal generators, simulators and 

calibrators, inclinometers, graduated cylinders and pipettes, spectrometers and chromatographs, 

micrometers and calipers, coordinate measuring machines, balances and scales.  Accordingly, 

instruments can consist of various components and associated specifications.   

 

4.1.3   Sensors and Transducers 

Sensors constitute equipment or devices that respond to a physical input (i.e., pressure, 

acceleration, temperature or sound).  The terms sensor and transducer are often used 

interchangeably.  Transducers more generally refer to devices that convert one form of energy to 

another.  Consequently, actuators that convert an electrical signal to a physical output are also 

considered to be transducers.  For the purposes of this document, discussion will be limited to 

sensors and transducers that convert a physical input to an electrical output. 
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Note: Transmitters constitute sensors coupled with internal signal conditioning 

and/or data processing components, as well as an output display.  

 

Some sensors and transducers convert the physical input directly to an electrical output, while 

others require an external excitation voltage or current.  Sensors and transducers encompass a 

wide array of operating principles (i.e., optical, chemical, electrical) and materials of 

construction.  Consequently, their characteristics and associated specifications can cover a broad 

spectrum of detail and complexity.  A selected list of sensors and transducers is shown in  

Table 4-1.    

 

Table 4-1.  Sensors  and Transducers 

Input  Sensor/Transducer Output  Excitation 

Temperature Thermocouple 

RTD 

Thermistor 

Voltage 

Resistance 

Resistance 

 

Current 

Current, Voltage 

Pressure and Sound Strain Gauge 

Piezoelectric 

Resistance 

Voltage 

Voltage 

Force and Torque Strain Gauge 

Piezoelectric 

Voltage 

Voltage 

Voltage 

 

Acceleration/Vibration 

 

Strain Gage 

Piezoelectric 

Variable Capacitance 

Voltage 

Charge 

Voltage 

Voltage 

 

Voltage 

Position/Displacement 

 

LVDT and RVDT 

Potentiometer 

AC Voltage 

Voltage 

Voltage 

Voltage 

Light Intensity Photodiode Current  

Flow Rate Coriolis 

Vortex Shedding 

Turbine 

Frequency 

Pulse/Frequency 

Pulse/Frequency 

 

Voltage 

pH Electrode Voltage  

 

4.1.4   Signal Conditioners 

Signal conditioners constitute devices or equipment that are employed to modify the 

characteristic of a signal. Conditioning equipment include attenuators, amplifiers, bridge circuits, 

filters, analog-to-digital and digital-to-analog converters, excitation voltage or current, reference 

temperature junctions, voltage to frequency and frequency to voltage converters, multiplexers 

and linearizers.  A representative list of signal conditioning methods and functions is provided in 

Table 4-2. 

 

Table 4-2.  Signal Conditioning Methods 

Type Function 

Analog-to-Digital Conversion (ADC) Quantization of continuous signal  

Amplification Increase signal level 
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Type Function 

Attenuation Decrease signal level 

Bridge Circuit Increase resistance output. 

Charge Amplification Convert charge to voltage. 

Cold Junction Compensation Provide temperature correction for thermocouple 

connection points. 

Digital-to-Analog Conversion (DAC) Convert discrete signal to continuous signal 

Excitation Provide voltage or current to transducer. 

Filter Provide frequency cutoffs and noise reduction 

Isolation Block high voltage and current surges.  

Linearization Convert non-linear signal to representative linear output. 

Multiplexing Provide sequential routing of multiple signals. 

 

4.1.5   Data Acquisition 

Data acquisition (DAQ) equipment provide the interface between the signal and the data 

processor or computer.  DAQ equipment include high speed timers, random access memory 

(RAM) and cards containing signal conditioning components. 

 

4.1.6   Data Processors 

Data processors constitute equipment or methods used to implement necessary calculations.  

Data processors include totalizers and counters, statistical methods, regression or curve fitting 

algorithms, interpolation schemes, measurement unit conversion or other computations.  Error 

sources resulting from data reduction and analysis are often overlooked in the assessment of 

measurement uncertainty. 

 

4.1.7   Output Displays 

Output display devices constitute equipment used to visually present processed data.  Display 

devices can be analog or digital in nature.  Analog devices include chart recorders, plotters and 

printers, dials and gages, cathode ray tube (CRT) panels and screens.  Digital devices include 

light-emitting diode (LED) and liquid crystal display (LCD) panels and screens.  Resolution is a 

primary source of error for digital and analog displays.  

 

4.2 Performance Characteristics 

Manufacturer specifications should provide an objective assessment of MTE performance 

characteristics.  However, understanding specifications and using them to compare or select 

equipment from different manufacturers or vendors can be a difficult  task.  This primarily results 

from inconsistent terminology, units, and methods used to develop and report equipment 

specifications. 

 

Some manufacturers may provide ample information detailing individual performance 

specifications, while others may only provide a single specification for overall accuracy.  In 

some instances, specifications can be complex, including numerous time or range dependent 

characteristics.  And, since specification documents are also a means for manufacturers to market 
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their products, they often contain additional information about features, operating condition 

limits, or other qualifiers. 

 

4.2.1   Static Characteristics 

Static performance characteristics provide an indication of how an instrument, transducer or 

signal conditioning device responds to a steady-state input at one particular time.  In addition to 

sensitivity (or gain) and zero offset, other static characteristics include nonlinearity, repeatability, 

hysteresis, resolution, noise, transverse sensitivity, acceleration sensitivity, thermal stability, 

thermal sensitivity shift, temperature drift, thermal zero shift, temperature coefficient, and 

accuracy.28  

 

4.2.2 Dynamic Characteristics 

Dynamic performance characteristics provide an indication of how an instrument, transducer or 

signal conditioning device responds to changes in input over time. Dynamic characteristics 

include warm-up time, response time, time constant, settling time, zero drift, sensitivity drift, 

stability, upper and lower cutoff frequencies, bandwidth, resonant frequency, frequency 

response, damping, phase shift, and reliability.29   

 

4.2.3 Other Characteristics 

Other characteristics are often included with performance specifications to indicate input and 

output ranges, environmental operating conditions, external power requirements, weight, 

dimensions and other physical aspects of the device.  These other characteristics include rated 

output, full scale output, range, span, dynamic input range, threshold, dead band, operating 

temperature range, operating pressure range, operating humidity range, storage temperature 

range, thermal compensation, temperature compensation range, vibration sensitivity, excitation 

voltage or current, weight, length, height, and width.  

 

4.3   Obtaining Specifications 

Manufacturers publish MTE specifications on their web pages, in product data sheets, technical 

notes, control drawings and operating manuals.  Some manufacturers also maintain an archive of 

specification information for discontinued products.  In some instances, manufacturers will only 

provide MTE specification information upon formal request by phone, fax or email.  In general, 

however, published specifications are relatively easy to find via an internet search. 

 

4.4   Interpreting Specifications 

Ultimately, the MTE user must determine which specifications are relevant to their application.   

Therefore, a basic understanding of the fundamental operating principles of the MTE is an 

important requirement for proper interpretation of performance specifications.  In some cases, 

first-hand experience about the MTE may be gained through calibration and testing.  In other 

cases, detailed knowledge about the MTE may be obtained from operating manuals, training 

courses, patents and other technical documents provided by the manufacturer.  

 

Ideally, MTE specifications provide adequate details about the expected performance 

characteristics of a representative group of identical devices or items (i.e., a specific 

manufacturer and model).  This information should be reported in a logical format, using 

                                                 
28 Accuracy is typically reported as a combined specification that accounts for nonlinearity, hysteresis, and repeatability. 
29 Reliability specifications typically refer to performance over an extended time-period or maximum number of cycles. 
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consistent terms, abbreviations and units that clearly convey pertinent performance 

characteristics.   

 

For the most part, manufacturer specifications are intended to convey tolerances or limits that are 

expected to bound the MTE performance characteristics.  For example, these limits may 

correspond to temperature, shock and vibration parameters that affect the sensitivity and/or zero 

offset of a sensing device.   

 

Unfortunately, there is no universal guide or standard regarding the development and reporting 

of MTE specifications.  Inconsistency in the methods used to develop and report performance 

specifications, and in the terms and units used to convey this information, create obstacles to the 

proper understanding and interpretation of MTE specifications.  

  

In select instances, the information included in a specification document may follow a 

standardized format.30  However, the vast majority of specification documents fall short of 

providing crucial information about the confidence levels associated with reported specification 

limits.  MTE manufacturers also donôt indicate the applicable probability distribution for a 

particular performance characteristic. 

 

Consequently, it is difficult to estimate uncertainties from MTE specifications without gaining 

further clarification or making some underlying assumptions.  It is a good practice to  

 

1. Review the specifications and highlight the MTE characteristics that need 

clarification.  

2. Check the operating manual and associated technical documents for other useful 

details.   

3. Request additional information and clarification from the manufacturerôs 

technical department.   

 

4.4.1    Terms, Definitions and Abbreviations 

Technical organizations, such as ISA and SMA, have published documents that adopt 

standardized instrumentation terms and definitions.31,32  However, there is a need for further 

clarification and consistency in the general terms and definitions used in the reporting of MTE 

specifications.  General terms and definitions for MTE specifications and other related 

characteristics are provided in Appendix A.  There are particular terms and abbreviations that 

require further discussion.   

 

For example, some MTE specifications may convey performance characteristics as ñtypicalò or 

ñmaximumò values.  However, the basis for these classifications is not often apparent and 

introduces confusion about which specification (typical or maximum) is applicable.  In addition, 

since associated confidence levels, containment probabilities or coverage factors are not often 

                                                 
30 See for example, ISA-RP37.2-1982-(R1995): Specifications and Tests for Strain Gauge Pressure Transducers, The 

Instrumentation, Systems and Automation Society, Reaffirmed December 14, 1982. 

31 ISA-37.1-1975 (R1982): Electrical Transducer Nomenclature and Terminology, The Instrumentation, Systems and 

Automation Society, Reaffirmed December 14, 1982. 

32 SMA LCS 04-99: Standard Load Cell Specifications, Scale Manufacturers Association, Provisional 1st Edition, April 24, 1999. 
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provided, it is difficult to clearly interpret either set of specifications.  Consequently, the 

manufacturer must be contacted for further clarification. 

 

MTE specifications commonly include the use of abbreviations such as FS, FSO, FSI, RDG, RO, 

RC and BSL.  The abbreviation FS (or F.S.) refers to full scale.  Similarly, the abbreviation FSO 

(or F.S.O.) refers to full scale output and the abbreviation FSI (or F.S.I.) refers to full scale input.  

Specifications that are reported as % FS (or ppm FS) generally refer to full scale output. When in 

doubt, however, contact the manufacturer for clarification.   

 

The abbreviation RDG refers to reading or output value. The abbreviation RO (or R.O.) refers to 

rated output and the abbreviation RC (or R.C.) refers to rated capacity.  Some MTE 

specifications also use the abbreviation BSL (or B.S.L.) to indicate that a combined non-

linearity, hysteresis, and repeatability specification is based on observed deviations from a best-

fit straight line.  Abbreviations commonly used in MTE specifications are listed in the Acronyms 

and Abbreviations section of this document. 

 

4.4.2    Qualifications, Stipulations and Warnings 

Most MTE specifications describe the performance characteristics covered by the manufacturerôs 

product warranty.  These reported specifications also often include qualifications, clarifications 

and/or caveats.  Therefore, it is a good practice to read all notes and footnotes carefully to 

determine which, if any, are relevant to the specifications.   

 

For example, MTE specification documents commonly include a footnote warning that the 

values are subject to change or modification without notice.  Manufacturers do not generally 

modify existing MTE specifications unless significant changes in components or materials of 

construction warrant the establishment of new specifications.  However, it may be necessary to 

contact the manufacturer to ensure that the appropriate MTE specification documents are 

obtained and applied.33  

 

MTE specifications may state a recommended range of environmental operating conditions to 

ensure proper performance.  They may also include a qualification indicating that all listed 

specifications are typical values referenced to standard conditions (e.g., 25 C̄ and 10 VDC 

excitation).  This qualification implies that the primary performance specifications were 

developed from tests conducted under a particular set of conditions.   

  

If so, additional specifications, such as thermal zero shift, thermal sensitivity shift and thermal 

transient response error, are included to account for the variation in actual MTE operating 

conditions from standard conditions. The MTE user must then consider whether or not these 

additional specifications are relevant to the MTE application. 

 

4.4.3    Specification Units 

As with terms and definitions, specification units can vary between manufacturers of similar 

MTE models.  In addition, specification units can vary from one performance characteristic to 

another for a given MTE manufacturer model.  

 

                                                 
33 That is, the published specifications considered by the manufacturer to be applicable at the time the MTE was purchased. 
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For example, display resolution specifications can be expressed in digits, counts, percent (%) or 

other units such as mV or ̄C.  Nonlinearity, hysteresis and repeatability specifications can be 

expressed as % FS, ppm FS, % RDG, ppm RDG, % RO or other units.  Sensitivity specifications 

can be expressed as mV/psi, 

an be expressed as % FS/F̄, % RO/̄C, ppm/̄C, % FS/g, psi/g, psi/̄F, mV/̄ C, %Load/̄F, etc.  

Noise specifications such as Normal Mode Rejection Ratio (NMRR) and Common Mode 

Rejection Ratio (CMRR) are generally specified in decibels (dB) at specified frequencies 

(usually 50 and 60 Hz).   

 

Different specification units can make it especially difficult to interpret specifications.  In most 

cases, unit conversion is required before specifications can be properly applied.  Selected 

specification conversion factors are listed in Table 4-3 for illustration.   

 

Table 4-3.  Specification Conversion Factors 

Percent ppm dB 

Relative to 

10 V 

Relative to 

100 psi 

Relative to 

10 kg/̄ C 

1% 10000 -40 100 mV 1 psi 100 g/̄ C 

0.1% 1000 -60 10 mV 0.1 psi 10 g/̄ C 

0.01% 100 -80 1 mV 0.01 psi 1 g/̄ C 

0.001% 10 -100 100 mV 0.001 psi 100 mg/̄C 

0.0001% 1 -120 10 mV 0.0001 psi 10 mg/̄ C 

 

Note:  A decibel (dB) is a dimensionless unit for expressing the ratio of two 

values of power, P1 and P2, where dB = 10 log(P2/P1).  The dB values in Table  

4-3 are computed for P2/P1 ratios corresponding to the percent and ppm values 

listed.  For electrical power, it is important to note that power is proportional to 

the square of voltage, V, so that dBV = 10 log (V1
2/V2

2) = 20 log (V1/V2).  

Similarly, acoustical power is proportional to the square of sound pressure, p, so 

that dBA = 10 log (p1
2/p2

2) = 20 log (p1/p2). 

 

Additional calculations may be required before specifications can be properly used to estimate 

MTE parameter bias uncertainty and tolerance limits.  This brings us to the topic of applying 

specifications. 

 

4.5  Applying Specifications 

Manufacturer specifications can be used to purchase or substitute MTE for a given measurement 

application, estimate bias uncertainties and establish tolerance limits for calibration and testing.  

Therefore, MTE users must be proficient at identifying applicable specifications and in 

interpreting and combining them.   

 

It is also important that manufacturers and users have a good understanding and assessment of 

the confidence levels and error distributions applicable to MTE specifications.  This is a crucial 

part of the process and requires some further discussion. 

 

4.5.1    Confidence Levels 

Some manufacturer MTE specifications are established by testing a sample of the produced 
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model population.  The sample test results are used to develop limits that ensure a large 

percentage of the MTE model population will perform as specified.  Consequently, the 

specifications are confidence limits with associated confidence levels.34 

 

That is, the limits specified for an MTE performance characteristic are established for a 

particular confidence level and degrees of freedom (or sample size), as discussed in Chapter 2. 

Confidence limits, ° Lx, for values of a specific performance characteristic, x, are expressed as  

 

 / 2,x xL t sa n° =°  (4-1) 

where 

 ta/2,n = t-statistic 

 a = significance level = 1 ï C/100 

 C =  confidence level (%) 

 n = degrees of freedom = n ï 1 

 n =  sample size 

 sx = sample standard deviation. 

  

Ideally, confidence levels should be commensurate with what MTE manufacturers consider to be 

the maximum allowable false accept risk (FAR).35  The general requirement is to minimize the 

probability of shipping an MTE item with nonconforming (or out-of-compliance) performance 

characteristics.  In this regard, the primary factor in setting the maximum allowable FAR may be 

the costs associated with shipping nonconforming products. 

 

Unfortunately, manufacturers donôt commonly report confidence levels for their MTE 

specifications.  In fact, the criteria and motives used by manufacturers to establish MTE 

specifications are not often apparent.  Most MTE manufacturers see the benefits, to themselves 

and their customers, of establishing specifications with high confidence levels.  However, 

competition between MTE manufacturers can result in unrealistically optimistic specifications 

that, in-turn, can result in excessive out-of-tolerance occurrences.36 

 

Alternatively, some manufacturers may test the entire produced MTE model population to ensure 

that individual items are performing within specified limits prior to shipment.  However, this 

compliance testing process does not ensure a 100% probability (or confidence level) that the 

customer will receive an in-tolerance item.  The reasons for this include 

 

1. Measurement uncertainty associated with the manufacturer MTE compliance 

testing process.  

2. MTE bias drift or shift resulting from shock, vibration and other environmental 

extremes during shipping and handling. 

 

Manufacturers may account for the uncertainty in their testing and measurement processes by 

using a higher confidence level (e.g., 99.9%) to establish larger specification limits or by 

                                                 
34 In this context, confidence level and containment probability are synonymous, as are confidence limits and containment limits.  
35 From a producer or manufacturerôs perspective, false accept risk is the probability of accepting and shipping a nonconforming 

item. 
36 See for example, Deaver, David: ñHaving Confidence in Specifications,ò proceeding of NCSLI Workshop and Symposium, 

Salt Lake City, UT, July 2004. 
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employing arbitrary guardbanding37 methods and multiplying factors.  In either case, the 

resulting MTE specifications are not equivalent to 100% confidence limits.   

 

Some manufacturers also conduct special environmental and accelerated life testing on a 

population subset to quantify the effects of potential shipping and handling stresses.  They might 

even include separate specifications for these effects.  However, not all MTE manufacturers 

incorporate these rigorous practices.   

 

4.5.2 Error Distributions  

MTE performance characteristics, such as nonlinearity, repeatability, hysteresis, resolution, 

noise, thermal stability and zero shift constitute sources of measurement error.  As discussed in 

Chapter 2, measurement errors are random variables that follow probability distributions. 

Therefore, MTE performance characteristics are also considered to be random variables that 

follow probability distributions.  

 

This concept is important to the interpretation and application of MTE specifications because an 

error distribution allows us to determine the probability that a performance characteristic is in 

conformance with its specification.  

 

Typically, manufacturers do not identify an underlying distribution for performance 

specifications.  This might imply that a specification simply bounds the range of values.  For the 

sampled MTE model specifications described in section 4.5.1., the performance characteristics of 

an individual unit may vary from the population mean.  However, the majority of the units 

should perform well within the specification limits.  Accordingly, a central tendency exists that 

can be described by the normal distribution.  

 

If the limits are asymmetric about a specified nominal value, it is still reasonable to assume that 

individual MTE performance characteristics will tend to be distributed near the nominal value.  

In this case, the normal distribution may still apply.  However, the lognormal or other 

asymmetric distribution may be more applicable. 

 

There are a couple of exceptions when the uniform distribution would be applicable.  These 

include digital output resolution error and quantization error resulting from the digital conversion 

of an analog signal.  In these instances, the specifications limits, , ° Lres and ° Lquan, would be 

100% confidence limits defined as 

 

 
2

res
h

L° =° (4-2) 

and 

 
12

quan n

A
L

+
° =°  (4-3) 

where  

 h  =  least significant display digit 

 A =  full scale range of analog to digital converter 

 n = quantization significant bits. 

 

                                                 
37 Guardbands are supplemental limits used to reduce false accept risk during calibration and testing.   
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4.5.3 Combining Specifications 

In testing and calibration processes, an MTE performance characteristic is identified as being  

in-tolerance or out-of-tolerance.  In some cases, the tolerance limits are determined from a 

combination of MTE specifications.  For example, consider the accuracy specifications for the 

DC voltage function of a Fluke 8062A digital multimeter.38 

 

For a displayed reading of 5 VDC, the accuracy specification is reported as ° (0.07% Reading + 

2 digits) and the resolution as 1 mV.  In this case, the accuracy specification is  ° (0.07% 

Reading + 2 mV).39  To compute the combined accuracy specification, we must convert the % 

Reading to a value in mV units. 

 

0.07% Reading = (0.07/100) ³ 5 V ³ 1000 mV/V =  3.5 mV 

 

The total accuracy specification for the 5 V output reading would then be ° (2.5 mV + 2 mV) or 

° 5.5 mV.   

 

For another example, consider the tolerance specifications for different gage block grades 

published by NIST.40  Suppose we want to compute the combined tolerance limits for a Grade 2 

gage block with 20 mm nominal length.  There are two sets of specification limits.  The first 

specification limits (+0.10 mm, -0.05 mm) are asymmetric, while the second specification limits 

(° 0.08 mm) are symmetric.  Consequently, the combined tolerance limits will be asymmetric and 

upper and lower tolerances (e.g., +L1, -L2) must be computed.   

 

There are two possible ways to compute values for L1 and L2 from the specifications: linear 

(additive) combination or root sum square (RSS) combination.   

 

1. Linear Combination    

L1 = 0.10 + 0.08 = 0.18 

L2  =  0.05 + 0.08 = 0.13 

 

2. RSS Combination 

( ) ( )
2 2

1 0.10 0.08 0.0164 0.13L = + = =  

( ) ( )
2 2

2 0.05 0.08 0.0089 0.09L = + = =  

 

If the specifications are interpreted to be additive, then the combined tolerance limits for the 20 

mm Grade 2 gage block are +0.18 mm, -0.13 mm.  Alternatively, if they are combined in RSS, 

then the resulting tolerance limits are +0.13 mm, -0.09 mm.   

   

                                                 
38 Specifications from 8062A Instruction Manual downloaded from www.fluke.com 
39 Understanding Specifications for Precision Multimeters, Application Note Pub_ID 11066-eng Rev 01, â2006 Fluke 

Corporation. 

40 The Gage Block Handbook, NIST Monograph 180, 1995. 



 

42 

Linear or RSS specification combination cannot be used for MTE that have complex 

performance characteristics.  For example, consider the specifications for a Transducer 

Techniques MDB-5-T load cell .41 

 

The load cell sensing element is a resistance-based strain gauge that requires an external 

excitation voltage.  This load cell has a rated output of 2 mV/V for loads up to 5 lbf which 

equates to a nominal sensitivity of 0.4 mV/V/lbf.  Therefore, the load cell output is a function of 

the excitation voltage and the applied load. 

 

 ExoutLC W S V= ³ ³  (4-4) 

where 

 

 W = Applied load or weight 

 S = Load cell sensitivity 

 VEx = Excitation voltage 

 

Equation (4-4) shows the mathematical relationship between the physical input (i.e., weight) and 

the electrical output (i.e., voltage) of the load cell.42  This relationship is called a transfer 

function.   

 

According to the specifications, the load cell output will be affected by the following error 

sources: 

 

¶ Excitation Voltage, ° 0.25 V 

¶ Nonlinearity, ° 0.05% of R.O. 

¶ Hysteresis, ° 0.05% of R.O. 

¶ Noise, ° 0.05% of R.O. 

¶ Zero Balance, ° 1% of R.O. 

¶ Temperature Effect on Output, ° 0.005% of Load/̄F 

¶ Temperature Effect on Zero, ° 0.005% of R.O./̄F 

 

If the load cell is tested or calibrated using a weight standard, then any error associated with the 

weight should also be included. 

 

Equation (4-4) needs to be modified to account for these error sources.  Unfortunately, given the 

assortment of specification units, the error terms cannot simply be added at the end of the 

equation.  The appropriate load cell output equation is expressed in equation (4-5). 

 

 ( )F F Exout s out zeroLC W TE TR S NL Hys NS ZO TE TR V¯ ¯è ø= + ³ ³ + + + + + ³ ³ê ú   (4-5) 

 

where 

 Ws = Wn + We     (4-6) 

 

                                                 
41 Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfm 
42 The validity of this equation depends on the use of appropriate units for the variables, W, S and VEx. 
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 VEx = Vn + Ve (4-7) 

and 

  

 Wn = Nominal or stated value of weight standard 

 We = Bias of weight standard  

 Vn = Nominal excitation voltage 

 Ve = Excitation voltage error 

 TEout = Temperature effect on output 

 TR̄F = Temperature range in ̄F 

 NL = Nonlinearity 

 Hys =  Hysteresis 

 NS = Noise and ripple 

 ZO = Zero offset 

 TEzero = Temperature effect on zero 

  

Equations (4-5) through (4-7) constitute an error model for the load cell output.  As discussed in 

Chapter 2, given some knowledge about the error distributions, the variance addition rule can be 

applied to estimate the uncertainty in the load cell output voltage for a given applied load.  

 

This procedure involves some additional concepts and methods that are covered in subsequent 

chapters.  A detailed uncertainty analysis of a load measurement system is presented in  

Chapter 7.    
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CHAPTER 5:  DIRECT MEASUREMENTS  
 

In direct measurements, the quantity of interest (i.e., subject parameter or measurand) is obtained 

directly by measurement and is not determined indirectly by computing its value from the 

measurement of other variables or quantities.  Examples of direct measurements include, but are 

not limited to the following: 

 

¶ Measuring the length of an object with a ruler or micrometer. 

¶ Measuring the output from a DC voltage reference with a voltmeter. 

¶ Measuring the temperature of a substance using a liquid-in-glass thermometer.  

 

In this chapter, the analysis of a micrometer calibrated with a gage block is used to illustrate the 

basic concepts and methods used to estimate uncertainty for direct measurements.  The general 

uncertainty analysis procedure includes the following the steps outlined in Chapter 2: 

 

1. Define the Measurement Process 

2. Develop the Error Model 

3. Identify Error Sources and Distributions 

4. Estimate Uncertainties 

5. Combine Uncertainties 

6. Report Analysis Results  

 

5.1 Define the Measurement Process 

In this example, a 0-25 mm digital micrometer is calibrated at 10 mm nominal length using a 

Class 2 (Grade 2) gage block set.  Multiple readings of the 10 mm gage block length are taken 

with the micrometer.  The repeat readings observed with the micrometer are listed in Table 5-1.  

 

Table 5-1.  Micrometer Measurements  

 

Reading 

 

Length (mm) 

Deviation from 

Nominal (mm) 

1 10.003 3 

2 10.002 2 

3 10.003 3 

4 10.004 4 

5 10.001 1 

6 10.005 5 

7 10.002 2 

8 10.004 4 

 

In this analysis, the quantity of interest is the average length obtained from the micrometer 

measurements corrected to a standard reference temperature of 20 C̄.  This value will be 

reported along with its estimated total uncertainty.  The results of the uncertainty analysis will be 

used to determine if the micrometer is within the manufacturer specified tolerance limits. 
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5.1.1 Gage Block Specifications 

The tolerance specifications for the Grade 2 gage block set are obtained from tabulated data 

published by NIST.43  Subsets of the data are listed in Tables 5-2 and 5-3.  

 

Table 5-2.  Tolerance Grades for Metric Gage Blocks (mm) 

Nominal Grade .5 Grade 1 Grade 2 Grade3 

< 10 mm 0.03 0.05 +0.10, -0.05 +0.20, -0.10 

< 25 mm 0.03 0.05 +0.10, -0.05 +0.30, -0.15 

< 50 mm 0.05 0.10 +0.20, -0.10 +0.40, -0.20 

< 75 mm 0.08 0.13 +0.25, -0.13 +0.45, -0.23 

< 100 mm 0.10 0.15 +0.30, -0.15 +0.60, -0.30 

   

Table 5-3.  Additional Tolerance for Length, Flatness, and Parallelism (mm) 

Nominal Grade .5 Grade 1 Grade 2 Grade3 

< 100 mm ° 0.03  ° 0.05 ° 0.08 ° 0.10 

< 200 mm   ° 0.08 ° 0.15 ° 0.20 

< 300 mm  ° 0.10 ° 0.20 ° 0.25 

< 500 mm  ° 0.13 ° 0.25 ° 0.30 

 

Gage block length is defined at the following standard reference conditions: 

 

 temperature  =  20 ̄ C (68 ̄ F) 

 barometric pressure =  101.325 KPa (14.7 psia) 

 water vapor pressure =  1.33 KPa (10 mm of mercury) 

 CO2 content of air  =  0.03%. 

 

Only temperature has a measurable effect on the physical length of the gage block as a result of 

thermal expansion or contraction.  The nominal coefficient of thermal expansion for gage block 

steel is 11.5 ³ 10-6/ C̄.  According to ANSI/ASME,44 the maximum allowable limits for the 

coefficient of thermal expansion are ° 1 ³ 10-6/ C̄.  

 

5.1.2 Micrometer Specifications 

Manufacturer specifications for the micrometer state a digital resolution of 1 mm and error 

(tolerance) limits of  ° 4 mm.  For the purposes of this analysis, the coefficient of thermal 

expansion for the micrometer is taken to be 5.6 ³ 10-6/deg ̄ C with corresponding error limits of  

° 0.5 ³ 10-6/ C̄.  

 

5.1.3  Environmental Temperature Specifications 

During the measurement process, an average laboratory temperature of 23 C̄ was monitored and 

maintained.  The tolerance limits of the temperature monitoring device are ° 2 ̄ C. 

 

                                                 
43 The Gage Block Handbook, NIST Monograph 180, 1995. 

44 Precision Gage Blocks for Length Measurement (Through 20 in. and 500 mm), ANSI/ASME B89.1.9M-1984. 
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5.2  Define the Error Model 

In this example, a 10 mm nominal gage block is measured with a micrometer and the average 

length reported.  Therefore, the basic measurement model for the length, x, is defined as 

 

 xtruex x e= +  (5-1) 

where 

 

 xtrue =  true gage block length 

  ex  = total error in the length measurement. 

 

The error model for ex is the sum of the errors encountered during the length measurement 

process and can be generally expressed as 

 

 ex = e1 + e2 + ... + en (5-2) 

 

where the numbered subscripts signify the different error sources.   

 

5.3 Identify Error Sources and Distributions 

In the length measurement process, we must account for the following errors: 

 

¶ Bias in the value of the 10 mm gage block length, eGbias.   

¶ Error associated with repeat measurements, eran. 

¶ Error associated with the digital resolution of the micrometer, eMres. 

¶ Operator bias during the micrometer measurement process, eop. 

¶ Environmental factors errors resulting from thermal expansion of the gage block 

and the micrometer, eenv. 

 

The micrometer bias is not included, because this is what is estimated in the uncertainty analysis.   

The error model for the length measurement can now be expressed as 

 

 ex  =  eGbias + eran + eMres + eop + eenv. (5-3) 

 

The specifications for the gage block and micrometer do not provide insight about which 

probability distribution to apply to each of these error sources.  However, as discussed in  

Chapter 4, Section 4.5.2, error distributions often exhibit a central tendency.  

 

In general, if an error distribution has a central tendency and the error limits are symmetric, the 

normal distribution is applicable.  If the error limits are not symmetric, the lognormal or other 

asymmetric distribution may be more applicable.  For the length measurement example, the 

uniform distribution is only applicable to the micrometer digital resolution error.  More 

discussion on the selection and application of error distributions for the length measurement 

example are discussed in the following section. 
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5.4 Estimate Uncertainties 

With the exception of repeatability or random error, the uncertainty in each error source must be 

estimated heuristically from the containment limits, °L, containment probability, p, and the 

inverse error distribution function, F-1(p), as shown in equation (5-4). 

 

 
-1F ( )

L
u

p
=  (5-4)  

 

As discussed in Chapter 4, equipment specifications should convey key information about the 

performance characteristics of the MTE.  For the most part, manufacturer specification data 

include ° limits for error sources that affect the MTE performance.  Information about the 

confidence level associated with these specification limits or the applicable error distribution are 

not often provided. 

 

Consequently, it is a good practice to thoroughly review the appropriate MTE specification 

information and highlight items that need clarification.  The manufacturer should then be 

contacted for additional information and clarification as required.  If this information is not 

obtainable from the manufacturer, then alternative sources should be employed including your 

own experience and best judgement.  

 

5.4.1 Gage Block Bias 

The gage block specifications indicate that the length bias is comprised of two error sources 

 

   ebias  =  etol + elfp (5-5) 

 

where etol is the tolerance error and elfp is the error due to length, flatness and parallelism. 

Applying the variance addition rule, 

 

 var(ebias) = var(etol + elfp) (5-6) 

  =  var(etol) + var(elfp) + 2cov(etol, elfp)  
   

where cov(etol, elfp) is the covariance between etol and elfp.  From Axiom 2 and equation (5-6), the 

gage block bias uncertainty can be expressed as 

 

 2 2
,2Gbias tol lfp tol lfp tol lfpu u u u ur= + + . (5-7) 

 

The tolerance error limits for Grade 2 gage blocks with nominal length less than 25 mm are  

+ 0.10 mm and ï 0.05 mm.  Given these skewed limits, the lognormal distribution should be 

applicable for etol.  The error limits for length, flatness and parallelism for Grade 2 gage blocks 

with nominal length less than 100 mm are  ° 0.08 mm.  Therefore, the normal distribution should 

be applicable for elfp.   
 

From experience, we know that gage block specifications typically represent a high in-tolerance 

or containment probability.  In this analysis, we will assume that a 99% containment probability 

applies for both error source limits.   
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5.4.1.1  Tolerance Error 

To compute the uncertainty in the tolerance error, utol, we refer to the lognormal distribution plot 

shown in Figure 5-1, where the mode, M, is equal to 10 mm, the lower containment limit, L1,  

is ï 0.05 mm, the upper containment limit, L2, is + 0.10 mm and the containment probability is 

99%.  

 

 

Figure 5-1.  Right-handed Lognormal Distribution 

 

As discussed in Appendix B, section B.2, the probability density function for a right-handed 

lognormal distribution is given by 

 

2
21

( ) exp ln 2
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where q is the physical limit for e, m is the population median and l is the shape parameter.  The 

uncertainty, utol, is the population standard deviation, s, which is defined as  

 

2 2/ 2| | 1m q e el ls= - -. 

 

The population median is defined as   
2

1m q el
å õ

= -æ ö
ç ÷

. 

 

The unknown variables q and l  must be solved for iteratively using the containment limits and 

containment probability.45  The numerical iteration was conducted off-line and the resulting 

uncertainty estimated to be 

 

utol =  0.0287 mm. 

 

5.4.1.2  Length, Flatness and Parallelism Error 

The uncertainty due to gage block length, flatness and parallelism error can be computed from 

the ° 0.08 mm containment limits, 99% containment probability and the inverse normal 

distribution function, F-1(.).  The inverse normal distribution function, can be found in statistics 

                                                 
45 Additional guidance is provided in Appendix B, Section B.2. 
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texts and in most spreadsheet programs. 

 

1

0.08ɛm 0.08ɛm

1 0.99 2.5758

2

lfpu
-

= =
+å õ

F æ ö
ç ÷

 = 0.0311 mm. 

 

5.4.1.3  Gauge Block Bias Uncertainty 

There is no reason to believe that there is any correlation between the gage block tolerance error 

and the error due to length, flatness and parallelism.  Therefore, the total uncertainty in the gage 

block bias is estimated to be 

 

2 2

2

(0.0287ɛm) (0.0311ɛm)

0.00179ɛm

0.042ɛm.

Gbiasu = +

=

=

 

 

5.4.2 Repeatability (Random Error )  

The uncertainty in the repeatability or random error in the length measurement is determined 

from the repeat measurements.  As discussed in Chapter 3, the uncertainty due to repeatability is 

equal to the standard deviation of the sample data.  The standard deviation of the sample of 

length measurements is given by  

 

( )
2

1

1

1

n

x i
i

s x x
n =

= -ä
-

 

 

where xi is the ith reading and the mean value of the sample is computed from 

 

( )1 2

1
... nx x x x

n
= + + +. 

 

The mean value of the length measurements is  

 

( )10.003 10.002 10.003 10.004 10.001 10.005 10.002 10.004
mm

8

10.003 mm

x
+ + + + + + +

=

=

 

 

and the differences between the measured values and the mean value are 
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1

2

3

4

5

6

10.003 10.003 0.000 mm = 0 m

10.002 10.003 0.001 mm = 1 m

10.003 10.003 0.000 mm = 0 m

10.004 10.003 0.001 mm = 1 m

10.001 10.003 0.002 mm = 2 m

10.005 10.003 0.002 mm  2 

x x

x x

x x

x x

x x

x x
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- = - = m
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7

8

m

10.002 10.003 0.001 mm 1 m

10.004 10.003 0.001 mm  1 m.

x x
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m

- = - =- =- m

- = - = = m

 

 

The standard deviation is 

() ( ) () () ( ) () ( ) ()
2 2 2 2 2 2 2 2

0 1 0 1 2 2 1 1
ɛm

7

12
ɛm 1.71ɛm 1.31 ɛm .

7

xs
+ - + + + - + + - +

=

= = =

 

 

Repeatability uncertainty is 

 

, 1.31 ɛm x ran xu s= =  

 

and the repeatability uncertainty in the mean value is 

 

,

1.31ɛm
0.463ɛm.

8

x
x ran

s
u

n
= = =  

 

Since the mean value is the quantity of interest in this analysis, ,x ranu  should be included in the 

overall uncertainty estimate.  

 

5.4.3 Resolution Error 

To estimate the uncertainty due to resolution error, we note that the micrometer has a digital 

readout.  Therefore, the resolution error can be assumed to be uniformly distributed.  The 

resolution uncertainty is estimated from the ° 0.5 mm containment limits, 100% containment 

probability and the inverse uniform distribution function.   

 

0.5ɛm
0.289ɛm

3
resu = =  

 

5.4.4 Operator Bias 

Inconsistencies as the operator uses the micrometer to measure the gage block length are most 

likely accounted for in the repeatability or random error.  However, we still need to account for 

the possibility of some consistent or systematic operator bias during the measurement process.   

Some possible sources of operator bias include how the operator positions the micrometer on the 

gauge block and the amount of clamping force applied to the gage block.   
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Since we do not know the sign or magnitude of the operator bias, we consider it to be a normally 

distributed error source.  To estimate the uncertainty in the operator bias, we will assume 

containment limits that are based on half of the resolution, with a 90% containment probability.  

 

( )( )

1

0.5 1ɛm 0.5ɛm
0.304ɛm

1 0.90 1.6449

2

opu
-

= = =
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F æ ö
ç ÷

. 

 

Note:  The containment limits for the operator bias are not necessarily based on 

resolution error.  Best judgement and knowledge should be used in developing 

appropriate containment limits and containment probability. 

 

5.4.5 Environmental Factors Error  

For this error source, we are interested in determining the uncertainty in the length measurement 

due to thermal expansion effects.  In this case, we must consider the thermal expansion of the 

gage block and the micrometer.  We must also account for the uncertainty in the environmental 

temperature reading and the uncertainty in the expansion coefficients. 

 

The change in length measurement, Dx, due to the temperature departure from 20 ̄ C nominal, 

results from the expansion (or contraction) of the gage block and the micrometer.  The net 

change is computed from the following equation 

 

 Dx  = xnom ³ (ag ï  am) ³ DT     (5-8) 

where  

 xnom = nominal gage block length  =  10 mm 

 ag = gage block expansion coefficient  =  11.5 ³ 10-6/ C̄ 

 am = micrometer expansion coefficient  =  5.6 ³ 10-6/ C̄ 

 DT = ambient temperature ï reference temperature  =  23 C̄ ï 20 ̄ C  =  3 ̄ C. 

 

Therefore, the change in length is computed as 

 

 Dx   =  10 mm ³ (11.5 ï  5.6) ³ 10-6/ C̄ ³ 3 ̄ C 

  = 1.77 ³ 10-4 mm 

  = 0.177 mm. 

 

The length measurement can be referenced back to 20 C̄ by subtracting 0.177 mm from the data 

sample average.  However, we must account for the error in this length correction due to errors 

in the monitoring temperature and expansion coefficients.  The error model is developed as 

follows:  

 

 eDx =  Dx ï Dxtrue (5-9) 

where 

 ( )( ) [ ].
g mtrue g m Tx Ta aa e a e eD

è øD = - - - ³ D -
é ùê ú

 (5-10) 

 

Substituting equations (5-8) and (5-10) into equation (5-9) yields 
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.

g m

g m

x nom nom nom g T nom m T

nom T nom T

x T x T x x

x x

a a

a a

e e e a e a e

e e e e

D D D

D D

= D - D + -

- +
 (5-11) 

 

The last two terms in equation (5-11) are referred to as second order terms and are considered to 

be small compared to the other first order terms.  Neglecting second order terms, we can express 

the length change error equation in a simpler form. 

     

 ( )
g mx nom nom nom g m Tx T x T xa ae e e a a eD D= D - D + -  (5-12) 

 

The coefficients for 
ga

e , 
ma

e  and TeD  are actually the partial derivatives of Dx with respect to 

ag,  am and DT. 

 

nom g
g

x
x T c

µD
= D =

µa
,  nom m

m

x
x T c

µD
=- D =

µa
  and  ( )nom g m T

x
x c

T
D

µD
= - =

µD
a a  

 

Therefore, the length change error can be expressed as  

 

 
g mx g m T Tc c ca ae e e eD D D= + +  (5-13) 

 

where cg, cm and cDT are sensitivity coefficients that determine the relative contribution of the 

temperature and expansion coefficient errors to the length change error. 

 

Applying the variance operator to equation (5-13) we have 

    

 

( ) ( )

( )

( ) ( )

2 2 2

var var

var( ) var( ) var( ) 2 cov ,

2 cov , 2 cov , .

g m

g m g m

g m

x g m T T

g m T T g m

g T T m T T

c c c

c c c c c

c c c c

a a

a a a a

a a

e e e e

e e e e e

e e e e

D D D

D D

D D D D

= + +

= + + +

+ +

  (5-14) 

 

From Axiom 2, the uncertainty in the length change error can be expressed as 

 

 

2 2 2 2 2 2
,

, ,

2

2 2

T
T g m g mg m

x
T T T T Tg g m m

g m g m

g m T

c u c u c u c c u u

u
c c u u c c u u

e a a a aa a

e ea a a a

e e e ee e

e

e e e e e e

r

r r

D
D

D
D D D D DD

+ + +

=
+ +

 (5-15) 

 

where the last three terms account for any error correlations. 

 

There is no physical reason to believe that a correlation exists between the expansion coefficient 

errors.  Similarly, there shouldnôt be any correlation between the temperature error and the 

expansion coefficient errors.  Therefore,  
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, 0
g ma ae er = ,  , 0

Tga
e er

D
= ,  , 0

Tma
e er

D
=  

 

and the uncertainty in the length change error can be expressed as 

 

 
2 2 2 2 2 2

x Tg m
Tg mu c u c u c u

a a
e e e eD D

D= + + . (5-16) 

 

The appropriate probability distribution for the temperature error and expansion coefficient 

errors is the normal distribution.  Therefore, the associated uncertainties can be estimated from 

the containment limits, containment probability and the inverse normal distribution function.  In 

this analysis, we will assume 95% containment probability for all three error sources. 

 

The uncertainty in the temperature error is estimated from  ° 2 ̄ C containment limits and a 95% 

containment probability. 

 

1

2 2
1.02 C

1 0.95 1.9600

2

T
ueD

-
= = = ¯

+å õ
F æ ö
ç ÷

 

 

Note:  In this example, only the error resulting from the temperature measuring 

device is considered.  However, other error sources resulting from variation in the 

room temperature and in the gage block and micrometer temperatures during the 

measurement process may also need to be considered. 

 

The uncertainty in the gage block expansion coefficient is estimated from ° 1 ³ 10-6/ C̄ 

containment limits and a 95% containment probability. 

 
6 6
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The uncertainty in the micrometer expansion coefficient is estimated from ° 0.5 ³ 10-6/ C̄ 

containment limits and a 95% containment probability. 

 
6 6

6
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0.5 10 / C 0.5 10 / C
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The corresponding sensitivity coefficients are  

 

 cg  =  10 mm ³ 3 ̄ C  =  30 mm- C̄  =  3 ³ 104  mm- C̄ 

 cm  =   ï10 mm ³ 3 ̄ C =  ï 30 mm- C̄  =  ï 3 ³ 104  mm- C̄ 

 cDT  =   10 mm ³ (11.5 ï 5.6) ³ 10-6/ C̄  =  5.9 ³ 10-5 mm/̄ C = 5.9 ³ 10-2 mm/̄ C 
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and the uncertainty in the length change error is computed to be 

 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 24 6 4 6 2

4 5 3

3

3 10 0.510 10 3 10 0.255 10 5.9 10 1.020ɛm

= 2.34 10 5.85 10 3.62 10 ɛm

= 3.91 10 ɛm 0.063ɛm .

x
ueD

- - -

- - -

-

= ³ ³ ³ + - ³ ³ ³ + ³ ³

³ + ³ + ³

³ =

 

 

Thus, the uncertainty due to environmental factors error is 

 

0.0625 ɛm
xenvu ueD

= = . 

 

5.5 Combine Uncertainties 

With the variance addition rule and Axiom 2, we have a method for combining the measurement 

process uncertainties uGbias, ,x ranu , uMres, uop and uenv.  No correlations should exist between 

measurement process errors, so the uncertainty in the length measurement can be expressed as 

 

 2 2 2 2 2
,x Gbias x ran Mres op envu u u u u ue = + + + +. (5-17) 

   

Therefore, the uncertainty in the average length measurement is computed to be 

 

2 2 2 2 2(0.042) (0.463) (0.289) (0.304) (0.063)ɛm

= 0.396ɛm 0.629ɛm.

x
ue = + + + +

=

 

 

The effective degrees of freedom, neff, for the combined uncertainty can be estimated using the 

Welch-Satterthwaite formula 

 

 

4

444 4 4
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,

4 4

4 444 4 4
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opx ranGbias Mres env

Gbias x ran Mres op env

op x ranx ranGbias Mres env

u

uuu u u

u u

u uuu u u

e

e e

n

n n n n n

=

+ + + +

= = ³

+ + + +
¤ ¤ ¤ ¤

 (5-18) 

 

The degrees of freedom for the combined uncertainty are computed to be 

 

( )
4

4

0.629ɛm
7 7 3.4 23.8

(0.463ɛm)
effn = ³ = ³ = 

 

and are rounded to the nearest whole number, 24. 
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5.6 Report Analysis Results 

All measurement uncertainties relevant to the micrometer calibration process have been taken 

into account and the analysis results can now be evaluated.  In calibration, uncertainty analysis is 

important for two main reasons.  First, to identify excessive uncertainties due to sources of error 

in our measurement process.  Second, to communicate the quantity of interest and its associated 

uncertainty or to decide whether the quantity is in-tolerance. 

 

5.6.1  Average Measured Value and Combined Uncertainty  

As previously stated, the quantity of interest is the average length measurement corrected to  

20 ̄ C.  In this analysis, the average length measurement at 20 C̄ is computed to be 

 

10.003 mm 0.000177 mm 10.0028 mmx= - =  

 

with a combined uncertainty of 0.629 mm with 24 degrees of freedom. 

 

5.6.2  Measurement Process Errors and Uncertainties 

The measurement process errors, distributions, uncertainties and degrees of freedom are 

summarized in Table 5-4.  The relative contributions of the measurement process uncertainties to 

the overall uncertainty in the average length measurement are shown in Figure 5-2.  The pareto 

chart46 shows that the uncertainties due to repeatability, operator bias, and micrometer resolution 

are the largest contributors to the 0.629 mm combined uncertainty. 

 

Table 5-4.  Measurement Process Uncertainties for Micrometer Calibration  

Error  

Source 

Containment  

Limits 

Containment 

Probability 

Error 

Distribution 

Standard 

Uncertainty 

Estimate 

Type 

Deg. of 

Freedom 

Gage Block Bias +0.18, -0.13 99.00 Lognormal 0.042 mm B ¤ 

Repeatability    0.463 mm A 7 

Micrometer 

Resolution 
° 0.5 100.00 Uniform 0.289 mm B ¤ 

Operator Bias ° 0.5 90.00 Normal 0.304 mm B ¤ 

Environmental 

Factors 
° 0.123 95.00 Normal 0.063 mm B ¤ 

 

                                                 
46  A Pareto (pronounced puh-RAY-toe) chart is a special type of bar chart where the values plotted are arranged in descending 

order of importance. The chart is based on the Pareto principle, which states that when several factors affect a situation, a few 

factors will account for most of the impact. 
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Figure 5-2.  Pareto Chart for Micrometer Calibration  

 

5.6.3  Confidence Limits 

The combined uncertainty and degrees of freedom can be used to compute confidence limits that 

are expected to contain the true value, m, with some specified confidence level or probability, p.  

The confidence limits are expressed as  

 

 / 2, x
x t ua n e°  (5-19) 

 

where the multiplier, ta/2n, is the t-statistic and a = 1- p.  

 

In this analysis, we will use a 95% confidence level (i.e., p = 0.95).  With a corresponding  

t-statistic t0.025,24 = 2.0639, the confidence limits are computed to be 

 

10.0028 mm 2.0639 0.629ɛm° ³   or  10.0028 mm 1.30ɛm° . 

 

5.6.4  In -tolerance Probability 

The last step in this analysis example is to determine if the micrometer measurement of the  

gage block 10 mm nominal length is within the ° 4 mm manufacturer specified tolerance limits.   

To do this, we must evaluate the micrometer bias, the gage block bias and the uncertainties in 

these biases.  

 

Recall from equation (5-1), the measured value x is defined by 

 

xtruex x e= +  

where 

 xtrue =  true gage block length 

  ex  = total error in the length measurement. 

 

The nominal gage block length, xnom, is related to the true length by 

 

 Gbiastruenomx x e= +  (5-20) 

Repeatability

Operator Bias

Environmental

Factors

Gage Block 

Bias

Percent Contribution to Length Measurement Uncertainty

0 10 20 30 40 50

Micrometer

Resolution
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where 

 eGbias  = bias in the gage block length. 

 

The difference between the measured value and the nominal gage block length is defined as 

 

 ( )( )
nom

true x true Gbias

x Gbias

x x

x x

d

e e

e e

= -

= + - +

= -

 (5-21) 

 

where d is a measure of the micrometer bias, eMbias.  Substituting equation (5-3) into equation  

(5-21), the uncertainty equation for eMbias is 

 

   
( ) ( )

2 2 2 2

var var
Mbias x Gbias ran Mres op env

ran Mres op env

u

u u u u

e e e e e e e

+

= - = + + +

= + +

 (5-22) 

 

Replacing uran in equation (5-22) with ,x ranu  = 1.31,  the combined uncertainty is computed to be 

 

2 2 2 2(1.31) (0.289) (0.304) (0.0626)ɛm

= 1.896ɛm =1.377ɛm

Mbias
ue = + + +

 

 

The degrees of freedom for the combined uncertainty is computed to be  

 

( )
4 4

4 4
,

1.377ɛm
7 7 7 1.22 8.5

(1.31ɛm)

x
eff

x ran

u

u

e
n = ³ = ³ = ³ = 

 

where the value is rounded to the nearest whole number, 9.    

 

The measurement results indicate that the average deviation from the gage block nominal length 

is d = + 2.8 mm.  The confidence limits for a single value of d are expressed as 

 

 / 2, Mbias
t ua n ed° . (5-23) 

 

For a 95% confidence level, t0.025,9 = 2.2622 and the confidence limits for d (e.g., eMbias) are 

computed to be  

 

2.8ɛm 2.2622 1.377ɛm° ³  or 2.8ɛm 3.12ɛm°  

 

Figure 5-3 shows the distribution for eMbias relative to the manufacturer specification limits.  The 

shaded area depicts the probability that eMbias falls outside of the micrometer specification limits.   

 

There is a much higher probability that the micrometer bias is within the manufacturer 
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specifications than outside them.  However, the in-tolerance probability needs to be computed 

and evaluated to decide whether or not the micrometerôs performance is acceptable for its 

intended application. 

 

Figure 5-3.  Micrometer Bias Distribution  

 

In this decision-making process, it is important to account for the fact that the observed deviation 

from nominal, d, is also affected by the bias in the gage block length, eGbias.  Consequently, the 

actual micrometer bias may be larger or smaller than d.   
 

The value of eGbias is unknown, but its uncertainty was estimated to be uGbias = 0.0423 mm.   

This uncertainty is much smaller than the micrometer bias uncertainty, uMbias = 1.377 mm.  

Therefore, one might deduce that eGbias has a minor impact on d.  However, a small value for  

uGbias does not preclude a large value for eGbias. 

 

To adequately determine micrometer in-tolerance probability, it is also necessary to estimate 

eGbias and the probability that eGbias is within its specified tolerance limits.  The calculation of 

biases and in-tolerance probabilities is beyond the scope of this document.  Readers are referred 

to NASA Measurement Quality Assurance Handbook Annex 4 ï Estimation and Evaluation of 

Measurement Decision Risk. 

- 4 mm + 4 mm

+ 2.8 mm

0 mm

f(eMbias)

eMbias
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CHAPTER 6:  MULTIVAR IATE MEASUREMENTS 
 

This chapter discusses the approach used to estimate the uncertainty of a quantity that is 

computed from measurements of two or more attributes or parameters.  The multivariate 

uncertainty analysis procedure consists of the following steps: 

 

1. Develop the Parameter Value Equation 

2. Develop the Error Model 

3. Develop the Uncertainty Model  

4. Identify the Measurement Process Errors 

5. Estimate Measurement Process Uncertainties 

6. Compute Uncertainty Components 

7. Account for Cross-Correlations 

8. Combine Uncertainty Components 

9. Report Analysis Results 

 

The procedure for developing error models and uncertainty models from the parameter value 

equation is presented. Identifying measurement process errors, estimating their uncertainties and 

accounting for cross-correlations is also presented.  The volume occupied by a cylinder obtained 

from length and diameter measurements is used to illustrate the concepts and methods of 

conducting a multivariate uncertainty analysis.   

 

6.1 Develop the Parameter Value Equation 

The parameter value equation is a mathematical relationship between the quantity of interest 

(subject parameter) and the variables or quantities to be measured.  The parameter value equation 

is also referred to as the governing or system equation.  For example, consider a case with three 

measured variables or quantities, x, y, z 

 

 ( ), ,q f x y z=  (6-1)  

where 

 q  =  subject parameter or quantity of interest 

 f  =  mathematical function that relates q to measured quantities x, y, and z. 

 

6.1.1 Cylinder Volume Example 

In this analysis example, a steel cylinder artifact with nominal design dimensions of 0.65 cm in 

length by 1.40 cm in diameter is measured with a micrometer.  The objective is to estimate the 

uncertainty in the cylinder volume measurement. 

 

The parameter value equation for the cylinder volume is given as 

 

 

2

2

D
V Lp

å õ
= æ ö

ç ÷
 (6-2)  

 

where L and D are the cylinder length and diameter, respectively.   
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From equation (6-2), we see that, to determine the cylinder volume, we need to measure the 

length and diameter.  The cylinder volume (i.e., parameter value) is then computed based on the 

values obtained for the length and diameter. 

   

6.2 Develop the Error Model  

The error model provides a mathematical relationship between the total error in the quantity of 

interest to the errors in the measured quantities.  The error model is determined from the 

parameter value equation using a first-order Taylor series approximation.47   

 

For example, the error model for eq in terms of the error components ex, ey and ey is developed by 

apply a first-order Taylor Series approximation to equation (6-1).     

 

 q x x y y z zc c ce e e e= + +  (6-3) 

 

Note:  For a multivariate measurement, errors in the measured quantities are  

called error components. 

 

The coefficients, cx, cy, and cz are sensitivity coefficients that determine the relative contribution 

of the error components to the total error.  The sensitivity coefficients are defined as 

 

( ), ,
x

f x y z q
c

x x

µ µ
= =

µ µ
 , 

( ), ,
y

f x y z q
c

y y

µ µ
= =

µ µ
 , 

( ), ,
z

f x y z q
c

z z

µ µ
= =

µ µ
 

 

Note:  The sensitivity coefficients are constants computed at a specified set of 

values for x, y, and z. These may be measured values or other values that are 

relevant to the measurement process being analyzed.  

 

6.2.1 Cylinder Volume Example 

Errors in the length and diameter measurements contribute to the overall error in the estimation 

of the cylinder volume.   In this example, the error model for the cylinder volume equation is 

developed algebraically to illustrate how the sensitivity coefficients for the length and diameter 

errors obtained in this manner compare to coefficients obtained using partial derivatives.  

 

By definition, 

 0 VV V e= +  

 0 DD D e= +  

 0 LL L e= +  

where 

 V 0 =  nominal or design volume     

 D0  =  nominal or design diameter  

 L0 = nominal or design length 

                                                 
47 Taylor Series, named after English mathematician Brook Taylor, allows the representation of a function as an infinite sum of 

terms calculated from its derivatives at a specified value.  This 1st order approximation is applicable to most measurement 

scenarios encountered in testing and calibration.  However, in the evaluation of stochastic processes, approximations may require 

the inclusion of 2nd order or higher terms. 
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 eV = cylinder volume error 

 eD = diameter measurement error 

 eL = length measurement error 

 

Therefore, equation (6-2) can be expressed as 

   

 ( )
2

0
0 0

2

D
V L

D
V L

e
e p e

+å õ
+ = +æ ö

ç ÷
. (6-4) 

 

By rearranging equation (6-4), we obtain an algebraic expression for the cylinder volume error. 
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   (6-5)  

 

The higher order terms, 
2

0 D
Le , 02 D LDe e and 

2

D Le e, are considered to be small compared to the 

other first order terms.  Neglecting these terms, the cylinder volume error equation can be 

expressed in a simpler form. 

  

 

( )2 2 2
0 0 0 0 0 0 0

2 2 2
0 0 0 0 0 0 0

2
0 0 0

2
4 4

4 4 2 4

2 4

V D L

D L

D L
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D L D L D L D

D L D

p p
e e e
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e e

p p
e e
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= +

 (6-6) 

 

Rearranging equation (6-6), yields 

 

 

2
0 0

0
2 2

V L D

D D
Le p e p e

å õ
= +æ ö
ç ÷

. (6-7) 

 

The coefficients for eL and eD in equation (6-7) are actually the partial derivatives of V with 

respect to L and D. 
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Therefore, the cylinder volume error model can be expressed as  

 

  V L L D Dc ce e e= +  (6-8) 

 

where the sensitivity coefficients, cL and cD, determine the relative contribution of the errors in 

length and diameter measurements to the total measurement error. 

 

6.3 Develop the Uncertainty Model 

As discussed in Chapter 2, the uncertainty in a quantity or variable is the square root of the 

variable's mean square error or variance.  In mathematical terms, this is expressed as 

 

 var( )q qu e= . (6-9) 

 

Applying the variance operator to equation (6-3) gives 

 

 
( ) ( )

2 2 2 2 2 2

var var

2 2 2

q q x x y y z z

x x y y z z x y xy x y x z xz x z y z yz y z

u c c c

c u c u c u c c u u c c u u c c u u

e e e e

r r r

= = + +

= + + + + +

 (6-10) 

 

where rxy, rxz and ryz are the correlation coefficients for the errors in x, y and z. 

 

6.3.1 Cylinder Volume Example ............................................................................................ 

Applying the variance addition operator to equation (6-8), the uncertainty in the cylinder volume 

can be expressed as 

 

 
( ) ( )

2 2 2 2

var var

2

V V L L D D

L L D D L D LD L D

u c c

c u c u c c u u

e e e

r

= = +

= + +

 (6-11) 

 

where rLD is the correlation coefficient for the length and diameter errors.  

 

6.4 Identify Measurement Process Errors 

As discussed in Chapter 2, measurement process errors are the basic elements of uncertainty 

analysis.  Once these fundamental error sources have been identified, we can begin to develop 

uncertainty estimates. 

 

6.4.1 Cylinder Volume Example 

In this example, the measurement process error sources are: 

 

1. Bias in the micrometer readings (bias). 

2. Repeatability or random error resulting from different values obtained from 

measurement to measurement (ran). 

3. Resolution error due to the finite resolution of the micrometer readings (res). 

4. Operator bias on the part of the measuring technician (op). 
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5. Error resulting from any thermal or other correction due to a departure from 

nominal environmental conditions (env). 

 

The errors in length and diameter measurements, eL  and eD, can be expressed in terms of their 

constituent process errors. 

 

  eL  =  eLbias + eLran + eLres + eLop + eLenv (6-12) 

and 

   eD  =  eDbias + eDran + eDres + eDop + eDenv. (6-13) 

 

For this example, the nominal or design specifications for the steel cylinder at 20 C̄ are 

 

 Length (L0)  = 0.65 cm 

 Diameter (D0) = 1.40 cm 

 Volume (V0) = 1.0 cc 

 

and the measurement process specifications are 

 

Micrometer Bias: ° 0.1mm with 97.5% confidence 

Digital Resolution: 0.1 mm 

Ambient Temperature: 24 ̄ C ° 2.5 ̄ C with 95% confidence 

Thermal Expansion Coefficient for Steel:   5.3 ³ 10-6 / C̄ ° 0.5 ³ 10-6 / C̄ 

Thermal Expansion Coefficient for Micrometer:  1.2 ³ 10-6 / C̄ ° 0.2 ³ 10-6 / C̄ 

 

Repeat measurements of the cylinder length and diameter, collected in pairs, yielded the data 

listed in Table 6-1. 

 

Table 6-1.  Offset from Nominal Values 

Sample 

Number 

Length Offset 

(mm) 

Diameter Offset 

(mm) 

1 0.4 0.2 

2 0.3 0.3 

3 0.3 0.4 

4 0.4 0.5 

5 0.5 0.3 

6 0.3 0.2 

7 0.4 0.4 

 

6.5 Estimate Measurement Process Uncertainties 

The specification information and the data in Table 6-1 are used to estimate the process 

uncertainties for the cylinder length and diameter measurements.  The methods of uncertainty 

estimation are summarized below. 

 

 uLbias, uDbias - Measurement bias uncertainty is determined heuristically from   

   micrometer tolerance limits and in-tolerance probabilities. 

 uLran, uDran - Repeatability uncertainty is determined statistically from  
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   measurement data. 

 uLres, uDres - Resolution uncertainty is determined heuristically from the  

   micrometer resolution specification and containment probability. 

 uLop, uDop - Operator bias uncertainty is determined heuristically based on the  

   micrometer resolution and a containment probability. 

 uLenv, uDenv - Environmental factors uncertainty is determined heuristically  

   from tolerances and in-tolerance probabilities for the environment  

   monitoring equipment. 

 

6.5.1 Measurement Bias Uncertainty 

Measurement bias can be considered to be a normally distributed error source.  Therefore, the 

uncertainty in the micrometer bias can be expressed in terms of the ° 0.1 mm containment limits, 

97.5% containment probability, and the inverse normal distribution function, F-1 (.) 
 

( )1

0.1 mm

1 0.975 / 2

0.1 mm
0.045 mm = 0.0045 cm.

2.2414

biasu
-

=
F è + øê ú

= =

 

 

The micrometer is used to measure cylinder length and diameter, so 0.0045 cm.Lbias Dbiasu u= =  

 

6.5.2 Repeatability Uncertainty 

As discussed in Chapter 3, repeatability uncertainty is equal to the standard deviation of the 

sample data. 

 

,x ran xu se =  

where 

( )
2

1

1

1

n

x i
i

s x x
n =

= -ä
-

 

 

and xi is the ith reading and the mean value of the sample is computed from 

 

( )1 2

1
... nx x x x

n
= + + +. 

 

In this example, the length measurements are recorded in offset units from the nominal length, 

L0.  The mean of the offset values for the cylinder length is  

 

( )0.4 0.3 0.3 0.4 0.5 0.3 0.4 mm

7

2.6 mm
0.37 mm = 0.037 cm

7

offsetL
+ + + + + +

=

= =
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and the differences between the measured offset values and the mean offset value are 

 

1

2

3

4

5

6

0.4 0.37 0.03 mm

0.3 0.37 0.07 mm

0.3 0.37 0.07 mm

0.4 0.37 0.03 mm

0.5 0.37 0.13 mm

0.3 0.37 0.07 mm

offset offset

offset offset

offset offset

offset offset

offset offset

offset offset

offs

L L

L L

L L

L L

L L

L L

L

- = - =

- = - =-

- = - =-

- = - =

- = - =

- = - =-

7
0.4 0.37 0.03 mm.et offsetL- = - =

 

 

The standard deviation is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2 2

0.03 0.07 0.07 0.03 0.13 0.07 0.03
mm

6

0.0343
mm 0.076 mm = 0.0076 cm.

6

offsetLs
+ - + - + + + - +

=

= =

 

 

Thus, the repeatability uncertainty for the cylinder length measurement is  

 

0.0076 cmLranu = . 

 

The mean or average cylinder length measurement is 

 

( )

0

0.65 0.037 cm

= 0.687 cm

offset
L L L= +

= +  

 

and the repeatability uncertainty in the mean cylinder length is 

 

0.0076
0.0029 cm

7
Lranu = = . 

 

The mean length will be used to compute the cylinder volume, so Lranu  will be used in the  

combined uncertainty estimate. 

 

Similarly, the mean of the offset values for the cylinder diameter is  

 



 

66 

( )0.2 0.3 0.4 0.5 0.3 0.2 0.4
mm

7

2.3
mm 0.33 mm = 0.033 cm

7

offsetD
+ + + + + +

=

= =

 

 

and the differences between the measured offset values and the mean offset value are 

 

1

2

3

4

5

6

0.2 0.33 0.13 mm

0.3 0.33 0.03 mm

0.4 0.33 0.07 mm

0.5 0.33 0.17 mm

0.3 0.33 0.03 mm

0.2 0.33 0.13 mm

offset offset

offset offset

offset offset

offset offset

offset offset

offset offset

off

D D

D D

D D

D D

D D

D D

D

- = - =-

- = - =-

- = - =

- = - =

- = - =-

- = - =-

7
0.4 0.33 0.07 mm.set offsetD- = - =

 

 

The standard deviation is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2 2

0.13 0.03 0.07 0.17 0.03 0.13 0.07
mm

6

0.0743
mm 0.11 mm = 0.011 cm.

6

offsetDs
- + - + + + - + - +

=

= =

 

 

Thus, repeatability uncertainty for the cylinder diameter measurement is 

 

0.011cm.Dranu =  

 

The mean or average cylinder diameter measurement is 

 

( )

0

1.40 0.033 cm

= 1.433 cm

offsetD D D= +

= +  

 

and the repeatability uncertainty in the mean cylinder diameter is 

 

0.011cm
0.0042 cm.

7
Dranu = =  

 

The mean diameter will be used to compute the cylinder volume, so Dranu  will be used in the 

combined uncertainty estimate. 
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6.5.3 Resolution Uncertainty 

To estimate the resolution uncertainty, we note that the micrometer has a digital readout.  

Therefore, the resolution error can be assumed to be uniformly distributed with ° 0.05 mm 

containment limits and 100% containment probability.  Therefore, the resolution uncertainty is 

computed to be 

 

 

0.05mm
0.029 mm 0.0029 cm

3
resu = = =  

 

Since the micrometer is used to measure cylinder length and diameter, 

 

0.0029 cm.Lres Dresu u= =  

 

6.5.4 Operator Bias Uncertainty 

Operator bias can be considered to be a normally distributed error source.  To estimate operator 

bias uncertainty, we will assume containment limits that are based on roughly half of the 

resolution error with 90% containment probability.  This results in an operator bias uncertainty 

of 

 

( )( )

( )1

0.5 0.01cm
0.0030 cm

1 0.90 / 2
opu

-
= =
F +è øê ú

. 

 

The same person measured cylinder length and diameter, so 0.0030 cm.Lop Dopu u= =  

 

Note:  Containment limits for the operator bias are not necessarily based on 

resolution error.  Any appropriate knowledge about operator bias can be used to 

develop containment limits and confidence levels. 

 

6.5.5 Environmental Factors Uncertainty 

We are interested in determining the uncertainty in the length and diameter measurements 

resulting from temperature effects.  Therefore, we must consider the thermal expansion of the 

cylinder and the micrometer, as well as the uncertainty in the environmental temperature 

measurement and the uncertainty in the expansion coefficients.48 

 

The effect of temperature deviation from 20 C̄ on the measured cylinder length is 

 

 DL  = L0 ³ (ac ï  am) ³ DT     (6-14) 

where  

 ac = cylinder expansion coefficient  =  5.3 ³ 10-6/ C̄ 

 am = micrometer expansion coefficient  =  1.2 ³ 10-6/ C̄ 

 DT = ambient temperature ï reference temperature  =  24 C̄ ï 20 ̄ C  =  4 ̄ C 

 L0 = nominal cylinder length  =  0.65 cm. 

 

                                                 
48 This analysis is similar to the environmental factors error model developed in Chapter 5, Section 5.4.5. 
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Similarly, the effect of temperature deviation from 20 C̄ on the measured cylinder diameter is 

 

 DD  = D0 ³ (ac ï  am) ³ DT     (6-15) 

 

where D0  =  nominal cylinder diameter  =  1.40 cm. 

 

The length change error is expressed as 

 

 1 2 3c mL L L L Tc c ca ae e e eD D= + +  (6-16) 

where 

 

1 0L
c

L
c L T

a

µD
= = D
µ

,  2 0L
m

L
c L T

a

µD
= =- D
µ

  and  ( )3 0L c m

L
c L

T
a a

µD
= = -
µD

. 

 

The diameter change error is expressed as 

 

 1 2 3c mD D D D Tc c ca ae e e eD D= + +  (6-17) 

where 

 

1 0D
c

D
c D T

a

µD
= = D
µ

,  2 0D
m

D
c D T

a

µD
= =- D
µ

  and  ( )3 0D c m

D
c D

T
a a

µD
= = -
µD

. 

 

Applying the variance operator to equation (6-16) we have 

 

 

( ) ( )

( )

( ) ( )

1 2 3

2 2 2
1 2 3 1 2

1 3 2 3

var var

var( ) var( ) var( ) 2 cov ,

2 cov , 2 cov , .

c m

c m c m

c m

L L L L T

L L L T L L

L L T L L T

c c c

c c c c c

c c c c

a a

a a a a

a a

e e e e

e e e e e

e e e e

D D

D

D D

= + +

= + + +

+ +

 (6-18) 

 

From Axiom 2, the uncertainty in the length change error can be expressed as 

 

 
3

3

2 2 2 2 2 2
1 2 1 2 ,

1 , 2 3 ,

2

2 2

L
T c m c mc m

L T T T Tc c m m

L L L L

L

L L L

c u c u c u c c u u
u

c c u u c c u u

e a a a aa a

e ea a a a

e e e ee e

e e e e e e

r

r r

D

D D D D

D

+ + +
=
+ +

. (6-19) 

 

No correlations should exist between the expansion coefficient errors, 
ca

e  and 
ma

e , or between 

the temperature error, eDT , and the expansion coefficient errors.  Therefore,  

 

, 0
c ma ae er = ,  , 0

Tca
e er

D
= ,  , 0

Tma
e er

D
=  

 

and the uncertainty in the length change error can be expressed as 
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 3
2 2 2 2 2 2
1 2

Tc m
LL L Lu c u c u c u

a ae e eDD = + + . (6-20) 

 

Similarly, the uncertainty in the diameter change error can be expressed as 

 

 3
2 2 2 2 2 2

1 2
Tc m

DD D Du c u c u c u
a ae e eDD = + + . (6-21) 

 

The appropriate probability distribution for the temperature error and expansion coefficient 

errors is the normal distribution.  Therefore, the associated uncertainties can be estimated from 

the containment limits, containment probability and the inverse normal distribution function.  In 

this analysis, we will use a 95% containment probability for all three error sources. 

 

The uncertainty in the temperature measurement error is expressed in terms of ° 2.5 ̄ C 

containment limits and 95% containment probability. 

 

[ ]1

2.5 C 2.5 C
1.276 C

1.9600(1 0.95) / 2
T

ueD -

¯ ¯
= = = ¯
F +

 

 

Note: In this example, only the error resulting from the temperature measuring device 

is considered.  However, other error sources resulting from variation in the room 

temperature and in the cylinder and micrometer temperatures during the measurement 

process may also need to be considered. 

 

The uncertainty in the cylinder expansion coefficient is estimated from ° 0.5 ³ 10-6/ C̄ 

containment limits and 95% containment probability. 

 
6 6

6

1

0.5 10 / C 0.5 10 / C
0.255 10 / C

1 0.95 1.9600

2

c
u
ae

- -
-

-

³ ¯ ³ ¯
= = = ³ ¯

+å õ
F æ ö
ç ÷

 

 

The uncertainty in the micrometer expansion coefficient is estimated from ° 0.2 ³ 10-6/ C̄ 

containment limits and 95% containment probability. 

 
6 6

6

1

0.2 10 / C 0.2 10 / C
0.102 10 / C

1 0.95 1.9600

2

m
u
ae

- -
-

-

³ ¯ ³ ¯
= = = ³ ¯

+å õ
F æ ö
ç ÷

 

 

The sensitivity coefficients for equation (6-20) are  

 

 cL1  =  0.65 cm  ³ 4 ̄ C  =  2.6 cm- C̄  

 cL2  =  ï 0.65 cm ³ 4 ̄ C  =  ï 2.6 cm- C̄ 

 cL3  =   0.65 cm ³ (5.3 ï 1.2) ³ 10-6/ C̄  =  2.67 ³ 10-6 cm/̄ C 

 

and the uncertainty in the cylinder length change error is computed to be 
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( ) ( ) ( ) ( ) ( ) ( )
2 2 22 2 26 6 6

11 6

2.6 0.255 10 2.6 0.102 10 2.67 10 1.276 cm

= 1.21 10 cm 3.48 10 cm.

Lu - - -
D

- -

= ³ ³ + - ³ ³ + ³ ³

³ = ³

 

 

The uncertainty in the cylinder length due to environmental factors error is  

 
-63.48 10  cmLenv Lu uD= = ³ . 

 

The sensitivity coefficients for equation (6-21) are  

 

 cD1  =  1.40 cm ³ 4 ̄ C  =  5.6 cm- C̄  

 cD2  =  ï1.40 cm ³ 4 ̄ C  =  ï 5.6 cm- C̄ 

 cD3  =   1.40 cm ³ (5.3 ï 1.2) ³ 10-6/ C̄  =  5.74 ³ 10-6 cm/̄ C 

 

and the uncertainty in the cylinder diameter change error is computed to be 

 

( ) ( ) ( ) ( ) ( ) ( )
2 2 22 2 26 6 6

11

6

5.6 0.255 10 5.6 0.102 10 5.74 10 1.276 cm

= 5.60 10 cm

7.48 10 cm.

Du - - -
D

-

-

= ³ ³ + - ³ ³ + ³ ³

³

= ³

 

 

The uncertainty in the cylinder diameter due to environmental factors error is 

 
-67.48 10  cmDenv Du uD= = ³ . 

 

6.6 Compute Uncertainty Components 

Applying the variance operator to equation (6-12), the uncertainty in the average cylinder length 

measurement can be expressed as 

 

 2 2 2 2 2
Lbias Lres Lop LenvL Lranu u u u u u= + + + + . (6-22) 

 

Similarly, applying the variance operator to equation (6-13) gives the following expression for 

the uncertainty in the average cylinder diameter measurement 

 

 2 2 2 2 2
Dbias Dres Dop DenvD Dranu u u u u u= + + + + . (6-23)  

 

Note:  There are no terms correlating process uncertainties within each 

component expression because the length measurement process errors are 

independent of one another, as are the diameter measurement process errors.   

 

The uncertainty in the average length measurement is computed to be 
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( ) ( ) ( ) ( ) ( )
22 2 2 2 6

5

0.0045 cm 0.0029 cm 0.0029 cm 0.0030 cm 3.48 10 cm

4.61 10 cm 0.0068 cm

Lu -

-

= + + + + ³

= ³ =

 

 

The uncertainty in the average diameter measurement is computed to be 

 

( ) ( ) ( ) ( ) ( )
22 2 2 2 6

2

0.0045 cm 0.0042 cm 0.0029 cm 0.0030 cm 7.48 10 cm

0.000055 cm 0.0074 cm

Du -= + + + + ³

= =

 

 

The degrees of freedom for the component uncertainties are computed using the Welch-

Satterthwaite formula  

   

 

4

444 4 4

L
L

LopLbias Lres LenvLran

Lbias Lres Lop LenvLran

u

uuu u u
n

n n n n n

=

+ + + +

 (6-24) 

and 

 

4

444 4 4

D
D

DopDbias Dres DenvDran

Dbias Dres Dop DenvDran

u

uuu u u
n

n n n n n

=

+ + + +

. (6-25) 

 

The degrees of freedom for all of the process uncertainties were assumed to be infinite, except 

for the repeatability uncertainties, Lranu  and Dranu , which have degrees of freedom equal to 6 

(i.e., sample size minus one).  Therefore, the degrees of freedom for the component uncertainties 

are computed to be 

 
44

4

0.0068 cm
6 181.4

0.0029 cm

L
L Lran

Lran

u

u
n n

å õ
= ³ = ³ =æ ö

ç ÷
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4

0.0074 cm
6 57.8

0.0042 cm

D
D Dran

Dran

u

u
n n

å õ
= ³ = ³ =æ ö

ç ÷
 

 

where the degrees of freedom are reported to the nearest whole numbers, 181Ln =  and 58Dn = . 

 

6.7 Account for Cross-Correlations 

Before we combine the length and diameter measurement uncertainties, we must consider if 

there are any cross-correlations between the length and diameter measurement process errors.  

First, we need to write an equation that expresses the correlation coefficient, rLD, for the 

component errors, eL and eD, in terms of the cross-correlation coefficients for the process errors 
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 ,
1 1

1 ji
nn

LD Li Dj Li Dj
i jL D

u u
u u

r r
= =

= ä ä  (6-26) 

 

where rLi,Dj is the cross-correlation coefficient between the eLi and eDj process errors for the 

length and diameter components, respectively.  

 

 

The cross-correlation coefficients can range from minus one to plus one.  A positive coefficient 

applies when the error sources are directly related.  A negative coefficient is used when the error 

sources are inversely related.  

 

Second, let us review what we know about the cylinder measurement process. 

 

1. Both length and diameter are measured using the same device (i.e., a micrometer). 

2. All measurements are made by the same person (operator). 

3. All measurements were made in the same measuring environment. 

 

Given this knowledge, we can assert that the following process errors are cross-correlated 

between the length and diameter components: 

 

¶ Measurement Bias - eLbias and eDbias 

¶ Operator Bias - eLop and eDop 

¶ Environmental Factors - eLenv and eDenv 

 

Therefore, equation (6-26) becomes 

 

 ( ), , ,

1
LD Lbias Dbias Lbias Dbias Lop Dop Lop Dop Lenv Denv Lenv Denv

L D

u u u u u u
u u

r r r r= + + . (6-27) 

 

6.7.1 Measurement Biases   

Since the same device is used to measure the cylinder length and diameter, the micrometer bias 

for these measurements is the same.  In this instance, the cross-correlation coefficient rLbias,Dbias 

is equal to 1.0. 

 

Note:  The micrometer bias may vary slightly over its range.  However, in this 

analysis we assume that this variation is negligible.  

 

6.7.2 Operator Biases   

Although the same operator makes both length and diameter measurements, human 

inconsistency prevents us from assigning a correlation coefficient equal to 1.0.  However, we 

also know that the correlation coefficient should not be equal to zero either.  Given that this is all 

we can say from heuristic considerations, we will set the cross-correlation coefficient between 

length and diameter operator biases rLop,Dop equal to 0.5.  
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6.7.3 Environmental Factors Errors   

As shown in Section 6.5.5, the length and diameter change errors, eDL and eDD, are functions of 

the expansion coefficient and temperature change errors.  Consequently, an increase or decrease 

in eDL will result in a proportionate increase or decrease in eDD.  Therefore, the cross-correlation 

coefficient rLenv,Denv, is equal to 1.0. 

 

The correlation coefficient rLD can now be expressed as 

 

 ( )
1

0.5LD Lbias Dbias Lop Dop Lenv Denv
L D

u u u u u u
u u

r = + + . (6-28) 

 

6.8 Combine Uncertainty Components 

The equation for the cylinder volume uncertainty is obtained by substituting equation (6-28) into 

equation (6-11) 

 

 ( )2 2 2 2 2 0.5Lbias Dbias Lop Dop Lenv DenvV L L D D L Du c u c u c c u u u u u u= + + + +  (6-29) 

 

where the sensitivity coefficients are 

 
2 2

21.433 cm
3.14159 1.613 cm

2 2L

D
c p

å õ å õ
= = =æ öæ ö

ç ÷ç ÷
 

and 

21.433 cm
3.14159 0.687 cm 1.547 cm

2 2D

D
c Lp

å õ å õ
= = ³ ³ =æ öæ ö

ç ÷ç ÷
. 

 

The cylinder volume uncertainty is computed to be 

 

( )( ) ( )( )

( )( )( ) ( ) ( )( )

( )

2 22 22 2

2 22 2 12

6 6 6 4

2 3 3

1.613 cm 0.0068 cm 1.547 cm 0.0074 cm

2 1.613 cm 1.547 cm 0.0045 cm 0.5 0.003 cm 3.48 cm 7.48 cm 10

1.20 cm 1.31 cm 1.24 cm 10

3.75 10 cm 0.0194 cm .

Vu
-

-

-

+
=

è ø+ + + ³
ê ú

= + + ³

= ³ =

 

The degrees of freedom for the cylinder volume uncertainty are estimated using the Welch-

Satterthwaite formula  

 

4
*

4 4 4 4
V

L L D D

L D

u

c u c u
n

n n

=

+

 (6-30) 

 

where *Vu  is the total uncertainty computed without cross-correlations between the uncertainty 
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components Lu  and Du .49 

 

( ) ( )
2 2

2 2 2 2 2 2
*

6 6 6 3

1.613 cm 0.0068 cm 1.547 cm 0.0074 cm

0.00012 cm 0.00013 cm 0.00025 cm 0.0158 cm .

V L L D Du c u c u= + = ³ + ³

= + = =

 

 

The degrees of freedom for the cylinder volume uncertainty are computed to be 

 

( )

( ) ( )

4
3

4 4
2 2

0.0158 cm
165.7

1.613 cm 0.0068 cm 1.547 cm 0.0074 cm

181 58

Vn = =

³ ³
+

 

 

and are reported as the nearest whole number, 166Vn = .  

 

6.9 Report Analysis Results 

We have accounted for all uncertainties considered to be relevant to the cylinder volume 

measurement process and can now evaluate the results of our analysis.  In this case, we are 

interested in the uncertainty in the cylinder volume computed from the average length and 

diameter measurements corrected to 20 C̄.  

 

6.9.1 Cylinder Volume and Combined Uncertainty 

The cylinder volume is computed using the average cylinder length and diameter corrected to  

20 ̄ C.   The average cylinder length and diameter at 24 C̄ were computed to be 0.687 cm and 

1.433 cm, respectively.  Equations (6-14) and (6-15) can be used to estimate the effect of 

temperature deviation from 20 ̄C on the measured cylinder length and diameter.      

  

 DL  = 0.65 cm ³ (5.3 ï  1.2) 10-6/ C̄ ³ 4 ̄ C 

  = 1.07 ³ 10-5 cm 

 

 DD  = 1.40 cm ³ (5.3 ï  1.2) 10-6/ C̄ ³ 4 ̄ C 

  = 2.30 ³ 10-5 cm 

 

Both the length and diameter expansion are considered to be insignificant for this analysis. 

Therefore, the cylinder volume can be computed using the uncorrected average length and 

diameter. 

 

 

2

2

D
V Lp

å õ
= æ ö

ç ÷
 (6-31) 

 

where L  = 0.687 cm and D = 1.433 cm.   The cylinder volume is computed to be  

  

                                                 
49 While the Welch-Satterthwaite formula is applicable for statistically independent, normally distributed error sources it can 

usually be thought of as a fair approximation in cases where error sources are not statistically independent. 
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 V  = 3.14159 ³ 0.687 ³ (1.433/2)2  =  1.108 cm3 

 

with an uncertainty of Vu = 0.019 cm3 and 166 degrees of freedom.   

 

6.9.2  Measurement Process Errors and Uncertainties 

The measurement process errors, corresponding distributions, uncertainties and degrees of 

freedom are summarized in Table 6-2.   

 

Table 6-2.  Measurement Process Uncertainties for Cylinder Volume Measurement 

 

Error 

Source 

 

Error  

Limits 

(cm) 

 

Error 

Containment 

Probability 

 

 

Error 

Distribution 

Estimated 

Standard 

Uncertainty 

(cm) 

 

 

Estimate 

Type 

 

Deg. 

of  

Freed. 

 

Sensitivity 

Coeff. 

(cm2) 

 

Component 

Uncertainty 

(cm3) 

eLbias ° 0.01 97.5% Normal 0.0045 B ¤ 1.613 0.0073 

eDbias ° 0.01 97.5% Normal 0.0045 B ¤ 1.547 0.0070 

Lrane     0.0029 A 6 1.613 0.0047 

Drane     0.0042 A 6 1.547 0.0065 

eLres ° 0.01 100% Uniform 0.0029 B ¤ 1.613 0.0047 

eDres ° 0.01 100% Uniform 0.0029 B ¤ 1.547 0.0045 

eLop ° 0.01 90% Normal 0.0030 B ¤ 1.613 0.0048 

eDop ° 0.01 90% Normal 0.0030 B ¤ 1.547 0.0046 

eLenv   Normal 3.48 ³ 10-6 B ¤ 1.613 5.61 ³ 10-6 

eDenv   Normal 7.48 ³ 10-6 B ¤ 1.547 1.16 ³ 10-5 

 

The component uncertainty is the product of the standard uncertainty and the sensitivity 

coefficient.  The relative contributions of the component uncertainties to the overall cylinder 

volume uncertainty are shown in Figure 6-1.  Recall from equation (6-29), the uncertainty in the 

cylinder volume accounts for cross-correlations between eLbias and eDbias, eLop and eDop, and eLenv 

and eDenv.  Consequently, measurement bias uncertainty (i.e., micrometer bias uncertainty) for 

length and diameter are the largest contributors to the uncertainty in cylinder volume, followed 

by operator bias and diameter repeatability. 
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Figure 6-1.  Pareto Chart for Cylinder Volume Measurement 

 

6.9.3  Confidence Limits 

The combined uncertainty and degrees of freedom can be used to compute confidence limits that 

are expected to contain the true cylinder volume with some specified confidence level or 

probability, p.  The confidence limits are expressed as  

 

 / 2, VV t ua n°  (6-32) 

 

where the multiplier, ta/2n, is the t-statistic and a = 1- p.  

 

For this analysis, let us assume that we want 99% confidence limits (i.e., p = 0.99).  The 

corresponding t-statistic is t0.005,166 @ 2.6 and the confidence limits are computed to be 

 
3 31.108 cm 2.6 0.019 cm° ³  or 

3 31.108 cm 0.049 cm° . 

 

6.9.3.1  Single Cylinder Volume Measurement 

To compute the confidence limits for the cylinder volume determined from a single pair of 

length and diameter measurements, ,L ranu  and ,D ranu  must be replaced with uL,ran and uD,ran in 

equations (6-22) and (6-23), respectively. 

 

The uncertainty components, uL and uD are then computed to be 

 

( ) ( ) ( ) ( ) ( )
22 2 2 2 6

5 2

0.0045 cm 0.0076 cm 0.0029 cm 0.0030 cm 3.48 cm 10
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= + + + + ³

= ³ =
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( ) ( ) ( ) ( ) ( )
22 2 2 2 6

4 2

0.0045 cm 0.011 cm 0.0029 cm 0.0030 cm 7.48 cm 10

1.59 10 cm 0.0126 cm

Du -

-

= + + + + ³

= ³ =

 

 

The associated degrees of freedom for these uncertainty components are similarly computed by 

substituting ,L ranu  and ,D ranu  with uL,ran and uD,ran, respectively. 
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The degrees of are reported to the nearest whole numbers, 17Ln =  and 10Dn = . 

 

The cylinder volume uncertainty is then computed by substituting uL and uD for Lu  and Du  in 

equation (6-29).   

 

( )( ) ( )( )

( )( )( ) ( ) ( )( )

( )

2 22 22 2

2 22 2 12

6 6 6 4 2 3 3

1.613 cm 0.0098 cm 1.547 cm 0.0126 cm

2 1.613 cm 1.547 cm 0.0045 cm 0.5 0.003 cm 3.48 cm 7.48 cm 10
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=

è ø+ + + ³
ê ú

= + + ³ = ³ =

 

The corresponding degrees of freedom are computed using the Welch Satterthwaite formula 
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where *Vu  is the cylinder volume uncertainty computed without cross-correlations. 
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The degrees of freedom for the cylinder volume uncertainty are computed to be 
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and are reported as the nearest whole number, 22Vn = .  

 

The confidence limits, relative to a single cylinder volume measurement are 

 

 / 2, VV t ua n° . (6-33) 

 

For a 99% confidence level, t0.005,22 @ 2.82 and the confidence limits are computed to be  

 
3 31.108 cm 2.82 0.027 cm° ³  or 

3 31.108 cm 0.076 cm° . 
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CHAPTER 7:  MEASUREM ENT SYSTEMS 
 

7.0 General 

This chapter discusses the approach used to estimate the uncertainty of a quantity (or subject 

parameter) that is measured with a system comprised of component modules arranged in series.  

The analysis process traces system uncertainty module by module from system input to system 

output.   

 

 

Figure 7-1.  Block Diagram for Example System  

 

System uncertainty analysis follows a structured procedure.  This is necessary because the output 

from any given module of a system may comprise the input to another module or modules.  

Since each module's output carries with it an element of uncertainty, this means that the same 

uncertainty may be present at the input of some other module.   

 

7.1   System Analysis Procedure 

In analyzing linear measurement systems, we develop output equations for each module.  From 

these equations, we identify sources of error for each module.  We then estimate the uncertainty 

in each error source and compute the combined uncertainty in the output of each module.  In 

doing this, we make certain that the uncertainty in the output of each module is included in the 

input to the succeeding module in the system.   

 

In this respect, the system analysis results are computed somewhat differently than those 

previously discussed for direct measurements and multivariate measurements.  The general 

system analysis procedure consists of the following steps: 

 

1. Develop the System Model 

2. Define the System Input  

3. Define the System Modules 

4. Identify Module Error Sources 

5. Develop Module Error Models 

6. Develop Module Uncertainty Models   

7. Estimate Module Uncertainties 

Subject

Parameter

Value

X
M 1 M 2 M 3 M 4

M 5 M 6 M 7 M 8

Measured

Value

Y8

Y1 Y2

Y4

Y3

Y6 Y7Y5

Y4

Sensor Interface1 Low Pass Filter Interface2

Amplifier A/D ConverterInterface3 Data Processor
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8. Compute System Output Uncertainty 

9. Report Analysis Results 

 

The processes for developing a system model and the corresponding module output equations are 

presented.  Processes for identifying measurement process errors, estimating their uncertainties 

and accounting for correlations are presented using a load cell measurement system for 

illustration.   

 

7.2 Develop the System Model 

The first step in the system analysis procedure is to develop a model that describes the modules 

involved in processing the measurement of interest (i.e., subject parameter).  The model should 

include a diagram depicting the modules of the system and their inputs and outputs and identify 

the hardware and software used.   

 

The system diagram can be a useful guide for developing the equations that describe the module 

outputs in terms of inputs and identify the parameters that characterize these processes.  It may 

also be beneficial to develop a functional model that relates component errors to the overall 

system output error. 

 

7.2.1   Load Cell Measurement System 

In this example, a load cell is calibrated using a weight standard, as illustrated in Figure 7-2.   

The calibration weight is extended from the load cell via a monofilament line.  The DC voltage 

output from the amplifier module is measured with a digital multimeter (DMM).  Three repeat 

measurements of DC voltage are obtained by adding and removing the calibration weight.   

 

 

Figure 7-2.  Load Cell Calibration Setup 

 

The purpose of this analysis is to estimate and report the total uncertainty in the average DC 

voltage obtained via the load cell calibration process.  For the load cell system analysis, we need 

to define the mathematical relationship between the quantity being investigated and its 

8062A

DMM

Model TMO-2

Amplifier/Conditioner

MDB-5-T

Load Cell

Calibration

Weight

Readout

Device
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component variables.  In this case, measurement is made through a linear sequence of stages as 

shown in Figure 7-3.  

 

 

Figure 7-3.  Block Diagram of Load Cell Measurement System 

 

The output, Y, from any given module of the system may comprise the input of another module 

or modules.  Since each module's output carries with it an element of uncertainty, then this 

uncertainty may be present at the input of a subsequent module. 

 

7.3   Define the System Input 

The second step in the system analysis procedure is to define the quantity or parameter value that 

is sought through measurement.50  The nominal (or expected) input value, measurement area and 

units are specified during this step. 

 

7.3.1   Load Cell Measurement System 

As previously indicated, a weight standard is used to calibrate the load cell measurement system.  

The nominal value of the calibration weight is stated to be 3 lbf.  In this case, the nominal value 

for the system input is 3, the input measurement area is force and the units are lbf.  

 

7.4 Define the System Modules 

Once a sufficiently detailed block diagram has been established, the equations that relate the 

inputs and outputs for each module can be developed.  The basic approach is to clearly describe 

the physical processes that transform the system input along its path from module to module. 

 

7.4.1 Load Cell Module (M1)   

The first module in the load cell measurement system consists of an MDB-5-T load cell 

manufactured by Transducer Techniques, Inc.  This load cell is a passive sensor that requires an 

external voltage source and has a rated output of 2 mV/V nominal for loads up to 5 lbf.  

Therefore, the nominal sensitivity of the load cell is 0.4 mV/V/lbf.    

 

The basic transfer function for the load cell module is given in equation (7-1).  

 

 LCOut = W ³ S ³ Vex (7-1) 

where 

 

 LCOut = Load cell output, mV 

 W = Applied load or weight, lbf 

 S = Load cell sensitivity, mV/V/lbf 

 Vex = Excitation voltage, V 

                                                 
50 i.e., the input stimulus to the measurement system.  

Calibration

Weight

X

Load Cell Amplifier/Signal 

Conditioner

Digital 

Multimeter

Measured

Voltage

Y3Y1 Y2

M 1 M 2 M 3
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7.4.2 Amplifier Module (M 2)   

The second system module is a TMO-2 Amplifier, manufactured by Transducer Techniques Inc.  

This module amplifies the mV output from the load cell module to V.  The nominal amplifier 

gain is the ratio of the maximum amplifier output to the maximum load cell output.  The basic 

transfer function for this module is given in equation (7-2). 

 

 AmpOut = LCOut ³ G  (7-2) 

where 

 AmpOut = Amplifier Output, V  

 G  = Amplifier Gain, V/mV 

 

7.4.3 Digital Multimeter Module (M 3)   

An 8602A digital multimeter, manufactured by Fluke, converts the analog output signal from the 

amplifier module to a digital signal and displays it on a readout device.  The basic transfer 

function for this module is expressed in equation (7-3). 

 

 DMMOut = AmpOut (7-3) 

where 

 DMMOut = Digital multimeter output, V  

 

7.5    Identify Module Error Sources 

The next analysis step is to evaluate module functions or parameters to identify errors that may 

contribute to the total module output error.  

 

In the analysis of the load cell measurement system, error in the mass of the calibration weight, 

errors intrinsic to the measurement equipment used, and other process errors are considered.  A 

list of applicable error sources is given below. 
 

¶ Bias in the value of the calibration weight 

¶ Errors associated with the MDB-5-T Load Cell  

¶ Errors associated with the Model TMO-2 Amplifier 

¶ Errors associated with the 8062A Digital Multimeter 

¶ Error associated with the repeat measurements taken 

 

7.5.1   Load Cell Module (M1)  

For this module, the following error sources must be considered: 

 

¶ Bias in the value of the calibration weight 

¶ Excitation voltage error 

¶ Load cell error 

 

Manufacturer's published specifications for the load cell51 are listed in Table 7-1.  The following 

sources of load cell error will be included: 

 

                                                 
51 Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfm 
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¶ Nonlinearity 

¶ Hysteresis 

¶ Noise 

¶ Zero balance 

¶ Temperature effect on output 

¶ Temperature effect on zero 

 

Table 7-1.  MDB-5-T Load Cell Specifications 

Specification Value Units 

Maximum Applied Load 5 lbf 

Rated Output (R.O.) 2 mV/V 

Nonlinearity 0.05% of R.O. mV/V 

Hysteresis 0.05% of R.O. mV/V 

Noise (Nonrepeatability) 0.05% of R.O. mV/V 

Zero Balance 1.0% of R.O. mV/V 

Compensated Temp. Range 60 to 160 F̄ 

Temperature Effect on Output 0.005% of Load/̄F lbf/ F̄ 

Temperature Effect on Zero 0.005% of R.O./̄F mV/V/ F̄ 

Recommended Excitation Voltage 10 VDC 

 

When developing an equation for the load cell module, the impact of the error sources on the 

output must be considered.  Each of the error sources listed above are discussed briefly to 

determine how they should be accounted for in the load cell output equation. 

 

7.5.1.1 Calibration Weight 

The 3 lbf calibration weight has specified error limits of ° 0.003 lbf.  In this analysis, these limits 

are interpreted to represent 99 % confidence limits.  The associated error distribution is 

characterized by the normal distribution. 

 

7.5.1.2 Excitation Voltage 

Since the MDB-5-T load cell is a passive sensor, it requires an external power supply.  The 

TMO-2 Amplifier provides a regulated 8 VDC excitation power supply with ° 0.25 V error 

limits.  The excitation voltage error limits are interpreted to be 95% confidence limits for a 

normally distributed error. 

 

7.5.1.3 Nonlinearity.   

Nonlinearity is a measure of the deviation of the actual input-to-output performance of the device 

from an ideal linear relationship.  Nonlinearity error is fixed at any given input, but varies with 

magnitude and sign over a range of inputs.  Therefore, it is considered to be a random error that 

is normally distributed.  The manufacturer specification limits of ° 0.05% of the rated output are 

interpreted to be a 95% confidence limits. 

 

7.5.1.4 Hysteresis   

Hysteresis indicates that the output of the device is dependent upon the direction and magnitude 

by which the input is changed.  At any input value, hysteresis can be expressed as the difference 

between the ascending and descending outputs.  Hysteresis error is fixed at any given input, but 
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varies with magnitude and sign over a range of inputs.  Therefore, it is considered to be a random 

error that is normally distributed.  The manufacturer specification limits of ° 0.05% of the rated 

output are interpreted to be a 95% confidence limits. 

 

7.5.1.5 Noise   

Nonrepeatability or random error intrinsic to the device, which causes the output to vary from 

observation to observation for a constant input is usually specified as noise.  This error source 

varies with magnitude and sign over a range of inputs and is normally distributed.  The 

manufacturer specification limits of ° 0.05% of the rated output are interpreted to be 95% 

confidence limits. 

 

7.5.1.6 Zero Balance   

Zero balance refers to the zero offset that occurs if the device exhibits a non-zero output for a 

zero input.  Although zero offset error can be reduced by adjustment, there is no way to 

completely eliminate it because we do not know the true value of the offset.  The manufacturer 

specification limits of ° 1% of the rated output are interpreted to be 95% confidence limits for a 

normally distributed error. 

 

7.5.1.7 Temperature Effects   

The load cell is part of a tension testing machine, which heats up during use.  The load cell 

temperature is monitored and recorded during the testing process and observed to increase from 

75 ̄ F to 85 ̄F.  The load cell is subjected to the same temperature change during calibration. 

 

Temperature can affect both the offset and sensitivity of the load cell.  To establish these effects, 

the device is typically tested at several temperatures within its operating range and the effects on 

zero and sensitivity or output are observed.  

 

Although the load cell is used within its compensated temperature range, the manufacturer 

acknowledges that some compensation error exists, hence the stated specifications for 

Temperature Effect on Output and Temperature Effect on Zero.  

 

The temperature effect on output of 0.005% load/F̄ specified by the manufacturer is equivalent 

to 0.00015 lbf/ F̄ for an applied load of 3 lbf.  The temperature effect on zero  and the 

temperature effect on output specifications are interpreted to be a 95% confidence limits for 

normally distributed errors.   

 

A 10 ̄ F temperature change is used in this analysis to account for temperature compensation 

error.  The temperature measurement error limits are ° 2 ̄ F with an associated 99% confidence 

level.  The temperature error is assumed to be normally distributed. 

 

7.5.2   Amplifier Module (M 2) 

For this module, the following error sources must be considered: 

 

¶ Load cell output error 

¶ Amplifier error 
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The manufacturer's published specifications for the amplifier52 are listed in Table 7-2.  For a 

recommended applied excitation voltage of 10 VDC, the MDB-5-T load cell has a maximum 

rated output of 20 mV.  Therefore, the TMO-2 amplifier has a nominal gain of 10V/20 mV or  

0.5 V/mV. 

 

Table 7-2.  TMO-2 Amplifier Specifications 

Specification Value Units 

Maximum Output Voltage 10 V 

Gain (nominal) 0.5 V/mV 

Gain Accuracy 0.05% of Full Scale mV 

Gain Stability 0.01% mV 

Nonlinearity 0.01%  mV 

Noise and Ripple < 3 mV 

Balance Stability 0.2% mV 

Temperature Coefficient 0.02% of F.S./̄C mV/ C̄ 

 

Given the above specifications, the following sources of amplifier error are applicable to this 

analysis: 

 

¶ Gain accuracy 

¶ Gain stability (or Instability) 

¶ Nonlinearity 

¶ Noise 

¶ Balance stability 

¶ Temperature coefficient 

 

7.5.2.1 Gain Accuracy   

Gain is the ratio of the amplifier output signal voltage to the input signal voltage.  In this case, 

the TMO-2 amplifier has a nominal gain of 10V/20 mV or 0.5 V/mV.  The manufacturer 

specified accuracy limits of ° 0.05% of full scale are interpreted to be 95% confidence limits for 

a normally distributed error.    

 

7.5.2.2 Gain Stability   

If the amplifier voltage gain is represented by GV, its input resistance by R and its feedback 

resistance by Rf, then oscillations are possible when 

 

V

f

RG

R R
p=

+
. 

 

These oscillations appear as an instability in the amplifier gain.  The manufacturer specification 

of 0.01% is interpreted to be ° 0.01% of full scale.  These limits are assumed to represent 95% 

confidence limits for a normally distributed error. 

 

                                                 
52 Specifications obtained from www.ttloadcells.com/TMO-2.cfm 
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7.5.2.3 Nonlinearity   

As with the load cell module, actual amplifier response may depart from the ideal or assumed 

output versus input curve.  Nonlinearity errors are point-by-point differences in actual versus 

expected response over the range of input signal levels.  The manufacturer specification of 

0.01% is interpreted to be ° 0.01% of full scale and representative of 95% confidence limits for a 

normally distributed errors. 

 

7.5.2.4 Noise   

Noise generated within the amplifier that enters the signal path causes errors in the amplifier 

output.  Since noise is directly related to gain, manufacturers usually specify noise error in 

absolute units of Volts RMS or Volts peak-to-peak.  The manufacturer specification of 3 mV 

peak-to-peak is estimated to be ° 1.5 mV limits that are equivalent to 99% confidence limits for 

a normally distributed error. 

 

7.5.2.5 Balance Stability   

Balance stability, or instability, refers to a non-zero amplifier output exhibited for a zero input.  

Although balance instability can be reduced by adjustment, there is no way to completely 

eliminate it because we do not know the true value of the zero offset. The manufacturer 

specification of ° 0.2% is interpreted to be ° 0.2% of full scale.  These limits are also interpreted 

to be 95% confidence limits for a normally distributed error. 

 

7.5.2.6 Temperature Coefficient   

Both the balance (or zero) and gain are affected by temperature.  Manufacturers generally state 

this as a temperature coefficient (or Tempco) in terms of percent change or full scale per degree.  

The manufacturer specification limits of ° 0.02% of full scale/̄ C are interpreted to be 95% 

confidence limits for a normally distributed error.   

 

To quantify the effect of temperature, however, we must establish the expected temperature 

change and use this with the temperature coefficient to compute expected variations.  As with the 

load cell module, the impact of temperature correction error is estimated using a temperature 

range of 5.6 ̄ C (10 ̄ F) with measurement error limits of ° 1.1 ̄ C with an associated confidence 

level of 99% for a normally distributed error.  

 

7.5.3  Digital Multimeter Module (M 3) 

Manufacturer's published specifications for the DC voltage function of the digital multimeter53 

are listed in Table 7-3.  In this module, key error sources include: 

 

¶ Amplifier output error 

¶ DC voltmeter accuracy  

¶ DC voltmeter digital resolution 

¶ Repeat measurements error 

  

                                                 
53 Specifications from 8062A Instruction Manual downloaded from www.fluke.com 
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Table 7-3.  8062A  DC Voltage Specifications 

Specification Value Units 

200 mV Range Resolution 0.01 mV 

200 mV Range Accuracy 0.05% of Reading + 2 digits  mV 

2 V Range Resolution 0.1  mV 

2 V Range Accuracy 0.05% of Reading + 2 digits mV 

20 V Range Resolution 1 mV 

20 V Range Accuracy 0.07% of Reading + 2 digits mV 

 

7.5.3.1 DC Voltage Accuracy.   

The overall accuracy of the DC Voltage reading for a 20 V range is specified as ° (0.07% of 

reading + 2 digits).  These specification limits are interpreted to be 95% confidence limits for a 

normally distributed error.  

 

7.5.3.2 Digital Resolution.   

The digital resolution for the 20 V DC range is specified as 1 mV.  Since this is a digital display, 

the resolution error is uniformly distributed.  Therefore, the resolution error limits ° 0.5 mV are 

interpreted to be the minimum 100% containment or bounding limits. 

 

7.5.3.3 Repeatability.   

Random error resulting from repeat measurements can result from various physical phenomena 

such as temperature variation or the act of removing and re-suspending the calibration weight 

multiple times.  Repeatability uncertainty will be estimated using the data listed in Table 7-4. 

 

Table 7-4.  DC Voltage Readings 

Repeat 

Measurement 

Measured  

DC Voltage 

(V) 

Offset from  

 Nominal   

DC Voltage 

(V) 

1 4.856 0.056 

2 4.861 0.061 

3 4.860 0.060 

 

7.6    Develop Module Error Models 

The next analysis step is to develop an error model for each module.  In most instances, the 

module output is a function of several variables.  Therefore, the error model must be developed 

using a multivariate analysis approach. 

 

As discussed in Chapter 6, the error model for a multivariate parameter q = f(x,y,z) is expressed 

as 

q x x y y z zc c ce e e e= + + , 

 

where cx, cy, and cz are sensitivity coefficients that determine the relative contribution of the 

errors in x, y and z to the total error in q.  The sensitivity coefficients are defined as 

 



 

88 

x

q
c

x

µå õ
=æ ö
µç ÷

 , y

q
c

y

å õµ
=æ ö
µç ÷

 , z

q
c

z

µå õ
=æ ö
µç ÷

. 

 

For the load cell measurement system, equations (7-1) through (7-3) provide the basis for the 

development of the module error models. 

  

7.6.1 Load Cell Module (M1)   

The load cell output equation (7-1) must be modified before the associated error model can be 

developed.  It is a good practice to first assign names to the relevant module error sources and 

other parameters.  The load cell error source and parameter names, descriptions, nominal values, 

error limits and confidence levels are listed in Table 7-5. 

 

Table 7-5.  Parameters used in Modified Load Cell Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error 

Limits 

Percent 

Confid. 

WC  Calibration Weight or Load 3 lbf ° 0.003 lbf 99 

S  Load Cell Sensitivity 0.4 mV/V/lbf   

NL  Nonlinearity 0 mV/V ° 0.001 mV/V 95 

Hys  Hysteresis 0 mV/V ° 0.001 mV/V 95 

NS  Nonrepeatability 0 mV/V ° 0.001 mV/V 95 

ZO  Zero Balance 0 mV/V ° 0.02 mV/V 95 

TR̄F  Temperature Range 10 ̄ F ° 2.0 ̄ F 99 

TEOut  Temperature Effect on Output 0 lbf/ F̄ ° 1.5 e-4 lbf/ F̄ 95 

TEZero  Temperature Effect on Zero 0 mV/V /̄ F ° 0.0001 mV/V /̄F 95 

Vex Applied Excitation Voltage 8 V ° 0.25 V 95 

 

Next, given what is known about the load cell error sources listed in Table 7-5, they must be 

appropriately incorporated into equation (7-1).  The modified module output equation is given in 

equation (7-4). 

 

 LCout = [(WC + TEout³TR̄F)³S + NL + Hys + NS + ZO +  TEZero³TR̄F]³Vex (7-4) 

 

From equation (7-4), the error model for the load cell module is given in equation (7-5).  

 

 

F F

Out C CLC

Out Out Zero Zero ex ex

W W S S NL NL Hys Hys NS NS ZO ZO

TE TE TE TE TR TR V V

c c c c c c

c c c c

e e e e e e e

e e e e
¯ ¯

= + + + + +

+ + + +
   (7-5) 

 

The partial derivative equations used to compute the sensitivity coefficients are listed below.  
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7.6.2 Amplifier Module (M 2)  

The amplifier output equation (7-2) must be modified before the associated error model can be 

developed.  The amplifier error source and parameter names, descriptions, nominal values, error 

limits and confidence levels are listed in Table 7-6. 
 

Table 7-6.  Parameters used in Modified Amplifier Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error  

Limits 

Percent 

Confidence 

LCOut Amplifier Input    

G Gain 0.5 V/mV   

GAcc Gain Accuracy 0 V ° 5 mV 95 

GS Gain Stability 0 V ° 1 mV 95 

GNL Nonlinearity 0 V ° 1 mV 95 

GNS Noise 0 V ° 1.5 mV 99 

BSt Balance Stability 0 V ° 20 mV 95 

TC Temperature Coefficient 0 V/ C̄ ° 2 mV/̄ C 95 

TR̄C Temperature Range 5.6 ̄ C ° 1.1 ̄ C 99 

 

Given what is known about the amplifier error sources listed in Table 7-6, they must be 

adequately incorporated into the amplifier module output equation (7-2).  The modified module 

output equation is given in equation (7-6). 

 

 AmpOut  = LCOut ³ G + GAcc + GS + GNL + GNS + BSt + TC ³ TR̄C (7-6) 

 

From equation (7-6), the error model for the amplifier module is given in equation (7-7).  
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   (7-7) 

 

The partial derivative equations used to compute the sensitivity coefficients are listed below.  
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7.6.3 Digital Multimeter Module (M 3)  

The digital multimeter output equation must also be modified before the associated error model 

can be developed.  The modified multimeter output equation given in equation (7-8) accounts for 

the relevant module parameters and error limits listed in Table 7-7.  The repeatability parameter, 

Vran, is estimated from the three repeat voltages listed in Table 7-4.  

 

 DMMOut  =  AmpOut + DMMAcc + DMMres + Vran (7-8) 

 

Table 7-7.  Parameters used in Modified Multimeter Module Equation 

Parameter 

Name 
Description 

Nominal or 

Mean Value 

Error  

Limits 

Percent 

Confidence 

AmpOut DMM Input 4.80 V   

DMMAcc DC Voltmeter Accuracy 0 V ° (0.07% Read + 2 mV) 95 

DMMres 
DC Voltmeter Digital 

Resolution 
0 V ° 0.5 mV 100 

 

The corresponding error model for the multimeter module is given in equation (7-9).  

 

 
OutOut Out Acc Acc res res ran ranDMM Amp Amp DMM DMM DMM DMM V Vc c c ce e e e e= + + +    (7-9) 

 

The partial derivative equations used to compute the sensitivity coefficients are listed below.  

 

1
OutAmp

Out

Out

DMM
c

Amp

µ
= =
µ

 

1
AccDMM

Out

Acc

DMM
c

DMM

µ
= =
µ

 

1
resDMM

Out

res

DMM
c

DMM

µ
= =
µ

 1
ranV

Out

ran

DMM
c

V

µ
= =
µ

 

 

7.7    Develop Module Uncertainty Models 

The next step in the system analysis procedure is to develop an uncertainty model for each 

system module, accounting for correlations between error sources.  

 

As discussed in Chapter 6, the uncertainty in a multivariate parameter q can be determined by 

applying the variance addition operator 
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where rxy, rxz and ryz are the correlation coefficients for the errors in x, y and z. 

 

7.7.1  Load Cell Module (M1)  

The uncertainty model for the load cell module output can be determined by applying the 

variance operator to equation (7-5). 
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 (7-10) 

 

There are no correlations between error sources for the load cell module.  Therefore, the 

uncertainty in the load cell output can be expressed as 
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 (7-11) 

 

7.7.2   Amplifier Module (M 2) 

The uncertainty model for the amplifier module output is developed by applying the variance 

operator to the corresponding error model given in equation (7-7). 
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(7-12)

 
 

There are no correlations between error sources.  Therefore, the uncertainty model for the 

amplifier module output can be expressed as 
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 (7-13) 

 

7.7.3   Digital Multimeter Module (M 3) 

The uncertainty model for the multimeter module output is developed by applying the variance 

operator to the corresponding error model given in equation (7-9). 
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 (7-14) 

 

There are no correlations between error sources and the correlation coefficients all have values of 

unity.  Therefore, the uncertainty model for the multimeter module output can be expressed as 
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2 2 2 2

Out Out
DMM Amp DMM DMM VAcc res ran

u u u u u= + + +
 (7-15) 

 

7.8   Estimate Module Uncertainties 

The next step in the system analysis procedure is to estimate uncertainties in module parameters 

and to use these estimates to compute the combined uncertainty and associated degrees of 

freedom for each module output.  

 

7.8.1   Load Cell Module (M1) 

The load cell output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.1, all of the error sources identified for the load cell module are 

assumed to follow a normal distribution.  Therefore, the corresponding uncertainties can be 

estimated from the error limits, ° L, confidence level, p, and the inverse normal distribution 

function, F-1(.), as discussed in Chapter 3. 
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For example, the bias uncertainty of the calibration weight is estimated to be 
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Similarly, the uncertainty due to the excitation voltage error is estimated to be 
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The sensitivity coefficients are computed using the parameter nominal or mean values.  
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The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-8. 

 

Table 7-8.   Estimated Uncertainties for Load Cell Module Parameters 

Param. 

Name 

Nominal or 

Mean Value 
° Error 

Limits 

Percent 

Conf. 

Standard 

Uncertainty 

Sensitivity  

Coefficient 

Component 

Uncertainty 

WC 3 lbf ° 0.003 lbf 99 0.0012 lbf 3.2 mV/lbf 0.0037 mV 

S 0.4 mV/V/lbf    24 lbf ³V  

NL 0 mV/V ° 0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

Hys 0 mV/V ° 0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

NS 0 mV/V ° 0.001 mV/V 95 0.0005 mV/V 8 V 0.0041 mV 

ZO 0 mV/V ° 0.02 mV/V 95 0.0102 mV/V 8 V 0.0816 mV 

TR̄F 10 ̄ F ° 2.0 ̄ F 99 0.7764 ̄F 0  

TEOut 0 lbf/ F̄ ° 1.5 ³ 10-4 lbf/ F̄ 95 0.0001 lb/̄F 32 ̄ F³mV/lbf 0.0024 mV 

TEZero 0 mV/̄ F ° 0.0001 mV/V/̄F 95 0.00005 mV/V/̄F 80 ̄ F³V 0.0041 mV 

Vex 8 V ° 0.25 V 95 0.1276 V 1.2 mV/V 0.1531 mV 

 

The component uncertainties listed in Table 7-8 are the products of the standard uncertainty and 

sensitivity coefficient for each parameter.  From equation (7-1), the nominal load cell output is 

computed to be 

 

LCOut = W ³S ³Vex = 3 lbf ³ 0.4 mV/V/lbf ³ 8 V =  9.60 mV. 

 

The load cell output uncertainty is computed by taking the root sum square of the component 

uncertainties. 
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The Welch-Satterthwaite formula given in equation (7-16) is used to compute the degrees of 

freedom for the load cell output  uncertainty.   
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 (7-16) 

 

The degrees of freedom for all of the error source uncertainties are assumed infinite.  Therefore, 

the degrees of freedom for the load cell output uncertainty are also infinite. 

 

7.8.2   Amplifier Module (M 2) 

The amplifier output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.2, all of the error sources identified for the amplifier module are 

assumed to follow a normal distribution.  Therefore, the corresponding uncertainties can be 

estimated from the error limits, confidence level, and the inverse normal distribution function. 

 

For example, the uncertainty due to the gain accuracy is estimated to be 
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The sensitivity coefficients are computed using the parameter nominal or mean values.  
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The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-9. 

 

Table 7-9.  Estimated Uncertainties for Amplifier Module Parameters 

Param. 

Name 

Nominal or 

Mean Value 
° Error 

Limits 

Percent 

Confid. 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty 

LCOut 9.6 mV   0.1740 mV 0.5 V/mV 0.0869 V 

G 0.5 V/mV    9.6 mV  

GAcc 0 V ° 5 mV 95 2.551 mV 1 0.0026 V 

GS 0 V ° 1 mV 95 0.510 mV 1 0.0005 V 



 

95 

GNL 0 V ° 1 mV 95 0.510 mV 1 0.0005 V 

GNS 0 V ° 1.5 mV 99 0.583 mV 1 0.0006 V 

BSt 0 V ° 20 mV 95 10.204 mV 1 0.0102 V 

TC 0 V ° 2 mV/̄ C 95 1.020 mV/̄C 5.6 ̄ C 0.0057 V 

TR̄C 5.6 ̄ C ° 1.1 ̄ C 99 0.427̄ C 0 0 V 

 

From equation (7-2), the nominal amplifier output is computed to be 

 

AmpOut = LCOut ³ G = 9.60 mV ³ 0.5 V/mV =  4.80 V. 

 

The amplifier output uncertainty is computed by taking the root sum square of the component 

uncertainties. 
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The degrees of freedom for the amplifier output uncertainty are computed using the Welch-

Satterthwaite formula, as shown in equation (7-17).   
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 (7-17) 

 

The degrees of freedom for all of the error source uncertainties are assumed infinite.  Therefore, 

the degrees of freedom for the amplifier output uncertainty are also infinite. 

 

7.8.3   Multimeter Module (M 3) 

The multimeter output uncertainty is computed from the uncertainty estimates and sensitivity 

coefficients for each module parameter.  

 

As discussed in section 7.5.3, the DMM accuracy error follows a normal distribution.  Therefore, 

the uncertainty due to the digital multimeter accuracy is estimated to be 
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The DMM resolution error follows a uniform distribution, so the digital multimeter resolution 

uncertainty is estimated to be 

 

0.5 mV 0.5 mV
0.3 mV 0.0003 V.

1.7323
DMMres

u = = = =  

 

The repeatability uncertainty is the standard deviation of the repeat measurements listed in Table 

7-4.  The mean voltage offset is  

 

0.056 0.061 0.060 0.177
V = V = 0.059 V

3 3
offset

V
+ +

=  

 

The differences between the individual voltage offsets and the mean value are 

 

1

2

3

0.056 V 0.059V=  0.003V
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The standard deviation is 
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2
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Thus, the repeatability uncertainty is  

 

0.0026 V.
ranVu =  

 

The mean voltage is  

( )

0

= 4.80 0.059 V

= 4.859 V

offset
V V V= +

+  

 

and the repeatability uncertainty in the mean voltage is 

 

0.0026 V 0.0026 V
0.0015 V

1.7323ranVu = = = . 

 

The mean voltage is the reported output value in this analysis, so 
ranVu should be used for the 

combined uncertainty estimate.  The estimated uncertainties for each parameter are listed in 
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Table 7-10. 

 

Table 7-10.  Estimated Uncertainties for Digital Multimeter Module Parameters 

Parameter 

Name 

Nominal or 

Mean Value 
° Error 

Limits 

Percent 

Conf. 

Standard 

Uncertainty 

Sensitivity 

Coefficient 

Component 

Uncertainty 

AmpOut 4.80 V   0.0877 V 1 0.0877 V 

DMMAcc 0 V ° 0.0054 V 95 0.0027 V 1 0.0027 V 

DMMres 0 V ° 0.0005 V 100 0.0003 V 1 0.0003 V 

Vran 0.059 V   0.0015 V 1 0.0015 V 

 

The average DMM output voltage is 4.859 V and the uncertainty in this value is computed by 

taking the root sum square of the standard uncertainties. 
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The degrees of freedom for the DMM output uncertainty are computed using the Welch-

Satterthwaite formula given in equation (7-18). 
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 (7-18) 

 

The degrees of freedom for error source uncertainties were assumed to be infinite, except for the 

uncertainty due to repeatability error, which has a degrees of freedom equal to 2.   So, the 

degrees of freedom for the estimated uncertainty in the DMM output voltage is computed to be 
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7.9 Compute System Output Uncertainty 

In general, the system output uncertainty is equal to the output uncertainty for the final module. 

The associated degrees of freedom for the system output uncertainty are also equal to the degrees 

of freedom for the final module output uncertainty.   

 

In the evaluation of the load cell system modules, it has been illustrated how the uncertainty in 

the output of one module propagates through to the next module in the series.  For a 3 lbf input 

load or weight, the average system output, V , and output uncertainty, Vu , are 4.859 V and  

0.097 V (or 97 mV), respectively. 
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Note:  The load cell system analysis can be duplicated for other calibration 

weights.  The resulting input weights, output voltages and uncertainties could then 

be used to create uncertainty statements for a range of values.   

 

7.10   Report Analysis Results  

The analysis results for the load cell measurement system are summarized in Table 7-11.  As 

should be expected, the signal output uncertainty increases substantially as errors propagate 

through the amplifier module.   

 

Table 7-11.  Summary of Results for Load Cell System Analysis 

Module 

Name 

Module  

Input 

Module 

Output 

Standard 

Uncertainty 

Degrees of 

Freedom 

Load Cell 3 lbf 9.60 mV 0.174 mV ¤ 

Amplifier 9.60 mV 4.80 V 87.7 mV ¤ 

Digital Multimeter 4.80 V 4.859 V 87.8 mV ¤ 

 

It is useful to take a closer look to determine how the uncertainties for each module contribute to 

the overall system output uncertainty.  This can be accomplished by viewing the pareto chart for 

each module, shown in Figures 7-4 through 7-6. 

 

The pareto chart for the load cell module shows that the excitation voltage and zero balance are 

the largest contributors to the load cell output uncertainty.  Replacement of the TMO-2 excitation 

voltage with a precision voltage source could significantly reduce the load cell output 

uncertainty.  Mitigation of the zero balance error, however, would most likely require a different 

load cell. 

 

 

Figure 7-4.  Pareto Chart for Load Cell Module 

 

Because the load cell output uncertainty is multiplied by the amplifier gain, it is the largest 

contributor to the amplifier output uncertainty, as shown in Figure 7-5.  Errors due to amplifier 

balance stability and temperature coefficient also have some effect on the amplifier output 

uncertainty.   
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Figure 7-5.  Pareto Chart for Amplifier Module  

 

As expected, the amplifier output uncertainty is the largest contributor to the digital multimeter 

output uncertainty.  The accuracy of the digital multimeter also adds to the output uncertainty. 

 

 

Figure 7-6.  Pareto Chart for Digital Multimeter Module  

 

7.10.1 Confidence Limits 

The system output uncertainty and degrees of freedom can be used to compute confidence limits 

that are expected to contain the system output voltage with some specified confidence level or 

probability, p.  The confidence limits are expressed as  

 

 / 2, VV t ua n°  (7-19) 

 

where the multiplier, ta/2n, is the t-statistic and a = 1- p.  

 

For this analysis, let us assume that we want 95% confidence limits (i.e., p = 0.95).  The 

corresponding t-statistic is t0.025,¤ = 1.96 and the confidence limits are computed to be 

 

4.859 V 1.96 0.0878 V° ³  or 4.859 V 0.172 V° . 
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CHAPTER 8:  UNCERTAINTY ANALYSIS FOR 
ALTERNATIVE CALIBRAT ION SCENARIOS 
 

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test 

(UUT) attributes.54  In general, calibrations are not considered complete without statements of 

the uncertainty in these estimates.  Developing these statements requires that all relevant sources 

of measurement error are identified and combined in a way that yields viable uncertainty 

estimates.   

 

Unfortunately, confusion regarding which error sources should be included and how they should 

be combined often exists for calibration processes.  Much of this confusion can be eliminated by 

an examination of the objective of each UUT attribute calibration and a consideration of the 

corresponding measurement configuration or ñscenario.ò 

 

In this chapter, the calibration of a UUT attribute is examined within the context of four 

scenarios.   

 

1. The measurement reference (referred herein as the MTE) measures the value of 

the UUT attribute. 

2. The UUT measures the value of the MTE attribute. 

3. The UUT and MTE attribute values are measured with a comparator. 

4. The UUT and MTE both measure the value of an attribute of a common artifact. 

 

Each scenario yields an observed value, referred to as a ñmeasurement resultò or ñcalibration 

resultò and a description of measurement process errors that accompany this result.  This 

information is summarized and then employed to obtain an uncertainty estimate in the calibration 

result.  Examples are given to illustrate concepts and procedures. 

 

8.1 Calibration Scenarios Overview 

The four calibration scenarios listed above are described in detail in the following sections.  The 

descriptions provide guidelines for developing uncertainty estimates relevant to each scenario. 

The structure and content of each description is intended to provide a basis for developing 

whatever mathematical customization is needed for specific measurement situations. 

 

In each scenario, we have a measurement denoted d.  The general measurement equation is 

 

 ,UUT b caled e= +  (8-1) 

 

where eUUT,b is the true UUT attribute bias and ecal is the calibration error.  Applying the variance 

operator to equation (8-1), the uncertainty in d is 

 

 
,var( ) var( )

var( ) .

cal UUT b cal

cal

u ed e

e

= = +

=
 (8-2) 

                                                 
54 An attribute is a measurable characteristic, feature or aspect of an object or substance. 
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8.1.1   Special Notation 

The notation used in this chapter differs slightly from that used in other chapters and appendices 

in this document.  The subscripts and variables designators used in this chapter are summarized 

in Table 8-1. 

 

Table 8-1.  Calibration Scenarios Notation 

Notation Description 

e an individual measurement process error, 
such as repeatability, resolution error, etc. 

e combined errors comprised of individual 
measurement process errors 

m measurement 

b bias 

cal calibration 

true true value 

n nominal value 

x quantities relating to the UUT 

y quantities relating to the MTE 

 

This special notation is intended to provide a means of distinguishing between individual 

measurement process errors and combined errors.  For example, measurement error is  

represented by the quantity em, the error in a calibration result is represented by ecal and the bias 

in the UUT attribute is represented by the quantity eUUT,b. 

 

8.1.2 Measurement Error Sources 

Measurement process errors encountered in a given calibration scenario typically include:55 

 

eMTE,b = bias in the measurement reference or MTE 

erep = repeatability or random error 

eres = resolution error 

eop = operator bias 

eother = other measurement error, such as that due to environmental corrections,      

   ancillary equipment variations, response to adjustments, etc. 

 

As discussed in Chapter 2, the sum of the errors encountered during the measurement process 

can be expressed as  

 

 ,m MTE b rep res op othere e e e ee= + + + + (8-3) 

 

where equation (8-3) is the measurement error model. 

 

                                                 
55 Descriptions of these measurement process errors are given in Chapter 3. 
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8.1.3 Calibration Error and Measurement Error  

As previously discussed, the result of a calibration is taken to be an estimation of the true UUT 

attribute bias, eUUT,b.  The error in the calibration result is represented by the quantity ecal.  In all 

four calibration scenarios, the uncertainty in the estimation of eUUT,b is computed as the 

uncertainty in ecal.   

 

For some calibration scenarios, ecal is synonymous with the measurement error em.  However, in 

other scenarios, ecal and em may not have equivalent sign or magnitude. 

 

8.1.4 UUT Attribute Bias  

For calibrations, it is implicitly assumed that the UUT attribute of interest is assigned some 

design or ñnominalò value xn.  The true value of the UUT attribute, xtrue, is the nominal value 

plus the UUT attribute bias. 

 

 ,true n UUT bx x e= +  (8-4)  

 

The difference between the UUT attributeôs true value, xtrue, and the nominal value xn is the UUT 

attributeôs bias eUUT,b.   

 

 ,UUT b true ne x x= -  (8-5) 

 

Note:   Equation (8-4) does not represent the basic measurement equation  

xn = xtrue + em.  Rather, it is a statement of the relationship between the UUT 

attributeôs true value, its stated nominal value and its bias.  In this context, the 

relationship between measurement error and the UUT attribute bias is  

em = - eUUT,b. 

 

In some cases, the UUT is a passive item, such as a gage block or weight, whose attribute of 

interest is a simple characteristic like length or mass.  In other cases, the UUT is an active device 

such as a voltmeter or tape measure, whose attribute consists of a reading or other output like 

voltage or measured length.  In the former case, the concepts of true value and nominal value are 

straightforward.  In the latter case, some comment is needed. 

 

As stated earlier, the result of a calibration is considered to be an estimate of the quantity eUUT,b.  

From equation (8-4), if the UUT attribute has a nominal value xn, estimating xtrue is equivalent to 

estimating eUUT,b.  Additionally, eUUT,b is an ñinherentò property of the UUT attribute, 

independent of its resolution, repeatability or other characteristic dependent on its application or 

usage environment.   

 

Accordingly, if the UUTôs nominal value consists of a measured reading or other actively 

displayed output, the UUT bias must be taken to be the difference between the true value of the 

quantity being measured and the value internally sensed by the UUT, with appropriate 

environmental or other adjustments applied to correct this value to reference (calibration) 

conditions. 

 

For example, suppose the UUT is a steel yardstick whose length is a random variable following a 

probability distribution with a standard deviation arising from variations in the manufacturing 
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process. The UUT is used under specified nominal environmental conditions where repeatability, 

resolution error, operator bias and other error sources may come into play.  In this case, the bias 

of the yardstick is systematically present, regardless of whatever chance relationship may exist 

between the length of the measured object, the closest observed ñtick mark,ò the temperature of 

the measuring environment, the perspective of the operator, and so on. 

 

8.1.5 MTE Attribute Bias  

The value of the MTE attribute, which the value of the UUT attribute is compared against, has an 

inherent deviation eMTE,b from its nominal attribute value yn or value stated in a calibration 

certificate or other document.  The true value of the MTE attribute ytrue is the nominal value plus 

the MTE attribute bias. 

 

 ,true n MTE by y e= +  (8-6) 

 

Note:   As with Equation (8-4), Equation (8-6) does not represent the basic 

measurement equation xn = xtrue + em.   

 

As with the UUT, the MTE may be a passive item, such as a gage block or weight or an active 

device, such as a voltmeter or tape measure.  In either case, it is important to bear in mind that 

eMTE,b is an inherent property of the MTE attribute, exclusive of other errors such as MTE 

resolution or the repeatability of the measurement process.  The value of the MTE attribute may 

vary with environmental deviations, but it can usually be adjusted or corrected to some reference 

set of conditions.  

 

8.2  Scenario 1: The MTE Measures the UUT Attribute Value 

In this calibration scenario, the UUT is a passive device whose attribute provides no reading or 

other metered output.  Its output may consist of a generated value, as in the case of a voltage 

reference, or a fixed value, as in the case of a gage block.56  The measurement equation is  

 

 true my x e= +  (8-7) 

 

where y is the measurement result obtained with the MTE, xtrue is the true value of the UUT 

attribute and em is the measurement error. 

 

Substituting equation (8-4) into equation (8-7), the measurement equation can be written as 

 

 ,n UUT b my x e e= + +. (8-8) 

 

The difference y ï xn is a measurement of the UUT attribute bias eUUT,b.  This quantity is denoted 

by the variable d  and defined as 

 

                                                 
56 Cases where the MTE measures the value of a metered or other UUT attribute exhibiting a displayed value are covered later as 

special instances of Scenario 4. 
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 ,

,

n

UUT b m

UUT b cal

y x

e

e

d

e

e

= -

= +

= +

 (8-9) 

 

where 

 , .cal m MTE b rep res op othere e e e ee e= = + + + + (8-10) 

 

Since the UUT is a passive device, resolution error and operator bias arise exclusively from the 

use of the MTE.  In addition, the uncertainty due to repeatability is estimated from a random 

sample of measurements taken with the MTE.  However, variations in UUT attribute value may 

contribute to this estimate.  Random variations in UUT attribute value and random variations due 

to other causes are not separable from random variations due to the MTE.57  Consequently, erep 

must be taken to represent a ñmeasurement process errorò rather than an error attributable to any 

specific influence.   

 

Given these considerations, the error sources erep, eres and eop in equation (8-10) are 

 

 

,

,

,

rep MTE rep

res MTE res

op MTE op

e e

e e

e e

=

=

=

 (8-11) 

 

where eMTE,rep represents the repeatability of the measurement process.  The ñMTEò part of the 

subscript indicates that the uncertainty in the error will be estimated from a sample of 

measurements taken by the MTE.  

 

From equations (8-10) and (8-11), the error in the calibration result d is 

 

 , , , ,cal MTE b MTE rep MTE res MTE op othere e e e ee = + + + + (8-12) 

 

and the uncertainty in d is  

 

 , , , ,

2 2 2 2 2

, , , ,

var( )

var( ) var( ) var( ) var( ) var( )

.

cal cal

MTE b MTE rep MTE res MTE op other

MTE b MTE rep MTE res MTE op other

u

e e e e e

u u u u u

e=

= + + + +

= + + + +

 (8-13) 

 

The error source eother may arise from corrections ensuing from environmental factors, such as 

thermal expansion.  In this case, it may be necessary to correct measured values to those that 

would be attained at some reference temperature, such as 20 C̄. 

 

For example, let the UUT attribute be gage block length and the MTE attribute be the reading 

obtained with a super micrometer.  If dUUT,env and dMTE,env represent thermal expansion 

                                                 
57 As stated in Section 2.3, random variations in a measured quantity are not separable from random variations due other error 

sources. 
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corrections to the UUT and MTE attributes, respectively, then the mean value of the 

measurement sample would be corrected by an amount equal to58 

 

 , ,env MTE env UUT envd d d= -  (8-14) 

 

and the error in the environmental correction denv would be written 

 

 , , .other env MTE env UUT enve e e e= = -  (8-15) 

 

The error in the corrected calibration result dcorr = d ï denv is 

 

 , , , , , ,cal MTE b MTE rep MTE res MTE op MTE env UUT enve e e e e ee = + + + + -  (8-16) 

 

and the uncertainty in dcorr is  

 

 , , , , , ,

2 2 2 2 2 2

, , , , , , , ,

var( )

var( ) var( ) var( ) var( ) var( )

2

cal cal

MTE b MTE rep MTE res MTE op MTE env UUT env

MTE b MTE rep MTE res MTE op MTE env UUT env env MTE env UUT env

u

e e e e e e

u u u u u u u u

e

r

=

= + + + + -

= + + + + + -

 (8-17) 

 

where the correlation coefficient renv accounts for any correlation between eMTE,env and eUUT,env.  

The correlation coefficient can range in value from ï 1 to +1.  If the same temperature 

measurement device (e.g., thermometer) is used to make both the UUT and MTE corrections, 

then  

 

 1envr =  (8-18)  

 

and equation (8-17) can be rewritten as 

 

 2 2 2 2 2 2

, , , , , , , ,2 .cal MTE b MTE rep MTE res MTE op MTE env UUT env MTE env UUT envu u u u u u u u u= + + + + + -   (8-19) 

 

8.3  Scenario 2 : The UUT Measures the MTE Attribute Value 

In this scenario, the MTE is a passive device whose reference attribute provides no reading or 

other metered output.  Its output may consist of a generated value, as in the case of a voltage 

reference, or a fixed value, as in the case of a gage block.59  The measurement equation is 

  

 x = ytrue + em (8-20) 

 

                                                 
58 The form of this expression arises from the fact that thermal expansion of the gage block results in an inflated gage block 

length, while thermal expansion of the micrometer results in applying additional thimble adjustments to narrow the gap between 

the anvil and the spindle, resulting in a deflated measurement reading. 
59 Cases where the UUT measures the value of a metered or other MTE attribute exhibiting a displayed value are covered later as 

special instances of Scenario 4. 
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where x is the value measured by the UUT, ytrue is the true value of the MTE attribute being 

measured and em is the measurement error.  Substituting equation (8-6) into equation (8-20), the 

measurement equation can be written as 

 

 x = yn + eMTE,b + em. (8-21) 

 

The difference x ï yn is a measurement of the UUT attribute bias eUUT,b.  This calibration result is 

denoted by the variable d  and defined by 

 

 ,n MTE b mx y ed e= - = + (8-22) 

 

For this scenario, the measurement error model is 

 

 ,m UUT b rep res op othere e e e ee= + + + + (8-23) 

 

where eUUT,b is the UUT attribute bias.  In this scenario, the MTE is a passive device.  Therefore, 

resolution error and operator bias arise exclusively from the use of the UUT.  In addition, the 

uncertainty due to repeatability is estimated from a random sample of measurements taken with 

the UUT.  Consequently, the error sources erep, eres and eop in equation (8-23) are 

 

 

,

,

, .

rep UUT rep

res UUT res

op UUT op

e e

e e

e e

=

=

=

 (8-24) 

 

The ñUUTò part of the subscript indicates that the uncertainty in the error will be estimated from 

a sample of measurements taken by the UUT.  The error source eother may need to include mixed 

contributions as described in Scenario 1. 

 

Substituting equations (8-23) and (8-24) into equation (8-22) and rearranging gives 

 

 , , , , ,UUT b MTE b UUT rep UUT res UUT op othere e e e e ed= + + + + + (8-25) 

 

As in scenario 1, equation (8-25) provides an expression that is separable into a measurement d 

of the UUT attribute bias, eUUT,b, and a calibration error, ecal, given by 

 

 ,UUT b caled e= +  (8-26) 

where 

 , , , ,cal MTE b UUT rep UUT res UUT op othere e e e ee = + + + +. (8-27) 

 

The uncertainty in d, and thus, eUUT,b is 
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 , , , ,

2 2 2 2 2

, , , ,

var( )

var( ) var( ) var( ) var( ) var( )

.

cal cal

MTE b UUT rep UUT res UUT op other

MTE b UUT rep UUT res UUT op other

u

u u u u u

e

e e e e e

=

= + + + +

= + + + +

 (8-28) 

 

8.4  Scenario 3: The MTE and UUT Attribute Values are Compared 

In this scenario, a device called a ñcomparatorò is used to measure or compare UUT and MTE 

attribute values.60  In keeping with the basic notation, the indicated value of the UUT attribute x 

is expressed as 

 ,true UUT mx x e= +  (8-29) 

 

and the indicated value of the MTE attribute y is expressed as 

 

 ,true MTE my y e= +  (8-30) 

 

where eUUT,m is the measurement error involved in the use of the comparator to measure the UUT 

attribute value and eMTE,m is the measurement error involved in the use of the comparator to 

measure the MTE attribute value. 

 

As discussed in Sections 8.1.4 and 8.1.5, for calibrations, the UUT attribute and MTE attribute 

are assigned some design or ñnominalò values xn and yn, respectively.  Substituting equation  

(8-4) into equation (8-29) gives 

 

 , ,n UUT b UUT mx x e e= + + . (8-31) 

 

Similarly, substituting equation (8-6) into equation (8-30) gives  

 

 , ,n MTE b MTE my y e e= + + . (8-32) 

 

The result of the comparison is a measured deviation d , which is expressed as   

 

 
, , , ,( ).n n UUT b MTE b UUT m MTE m

x y

x y e e

d

e e

= -

= - + - + -
 (8-33) 

 

In most calibrations involving comparators, xn = yn and equation (8-33) becomes 61 

 

 , , , ,( )UUT b MTE b UUT m MTE me ed e e= - + - . (8-34) 

 

As with the previous scenarios, equation (8-34) provides an expression that is separable into a 

measurement d of the UUT attribute bias, eUUT,b, and a calibration error, ecal, given by 

                                                 
60 The MTE and UUT attributes may be measured sequentially or simultaneously, depending on the comparator device. 
61 To accommodate cases where yn  ̧xn, d = (x ï xn) ï (y ï yn).  For example, consider a case where the MTE is a 2 cm gage block 

and the UUT is a 1 cm gage block.  Suppose that the comparator readings for the MTE and UUT are 2.10 cm and 0.99 cm, 

respectively.  Then, d = (0.99 - 1.0 ) ï (2.10 - 2.0) = - 0.110 cm.  The corrected value for the UUT attribute is  xc = x + d  = 1.0 

cm + (- 0.110) cm = 0.89 cm. 
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 ,UUT b caled e= +  (8-35) 

where 

 , , ,( )cal UUT m MTE m MTE bee e e= - - . (8-36) 

 

The measurement error model for eMTE,m is 

 

 , , , , , ,MTE m c b MTE rep MTE res MTE op MTE othere e e e ee = + + + +  (8-37) 

 

where ec,b represent the bias of the comparator.  Similarly, the measurement error model for 

eUUT,m is 

 

 , , , , , ,UUT m c b UUT rep UUT res UUT op UUT othere e e e ee = + + + + . (8-38) 

 

Substituting equations (8-37) and (8-38) into equation (8-36), ecal is 

 

 
, , , , , ,

, , ,

( ) ( ) ( )

( ) .

cal UUT rep MTE rep UUT res MTE res UUT op MTE op

UUT other MTE other MTE b

e e e e e e

e e e

e = - + - + -

+ - -
 (8-39) 

 

The uncertainty in d is 

 

 
, , , , , ,

, , ,

var( )

var( ) var( ) var( )

var( ) var( ).

cal cal

UUT rep MTE rep UUT res MTE res UUT op MTE op

UUT other MTE other MTE b

u

e e e e e e

e e e

e=

- + - + -
=
+ - + -

 (8-40) 

 

Accounting for possible correlations between eUUT,op and eMTE,op and between eUUT,other and 

eMTE,other, the uncertainty in d can be expressed as 

 

 

2 2 2 2 2 2

, , , , , ,

2 2 2

, , , , , , ,2 2

MTE rep UUT rep MTE res UUT res MTE op UUT op

cal

op MTE op UUT op MTE other UUT other other MTE other UUT other MTE b

u u u u u u
u

u u u u u u ur r

+ + + + +
=
- + + - +

. (8-41) 

 

8.5  Scenario 4: The MTE and UUT Measure a Common Artifact 

In this scenario, both the MTE and UUT measure the attribute value of a common artifact.  The 

measurements by the MTE and UUT are made and recorded separately.  An example of this 

scenario is the calibration of a thermometer (UUT) using a temperature reference (MTE), where 

both the UUT and MTE are placed in an oven. 

 

Denoting the true value of the artifact as T, the UUT measurement equation is  

  

 ,UUT mx T e= +  (8-42) 

 

where eUUT,m is the measurement process error for the UUT measurement of the artifactôs value.  
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Similarly, the MTE measurement equation is  

 

 ,MTE my T e= +  (8-43) 

 

where eMTE,m is the measurement process error for the MTE measurement of the artifactôs value. 

 

The difference between the measurement results d  is expressed as   

 

 
, , .UUT m MTE m

x yd

e e

= -

= -
 (8-44)  

 

The measurement error model for eUUT,m is 

 

 , , , , , ,UUT m UUT b UUT rep UUT res UUT op UUT othere e e e ee = + + + +  (8-45) 

 

and the measurement error model for eMTE,m is 

 

 , , , , , ,MTE m MTE b MTE rep MTE res MTE op MTE othere e e e ee = + + + + . (8-46) 

 

Substituting equations (8-45) and (8-46) into equation (8-44), provides an expression that is 

separable into a measurement d of the UUT attribute bias, eUUT,b, and a calibration error, ecal, 

given by 

 

 ,UUT b caled e= +  (8-47) 

where 

 
, , , , ,

, , , ,

( ) ( )

( ) ( ).

cal MTE b UUT rep MTE rep UUT res MTE res

UUT op MTE op UUT other MTE other

e e e e e

e e e e

e =- + - + -

+ - + -
 (8-48) 

 

As in scenario 3, the uncertainty in d is  

 

 
, , , , ,

, , , ,

var( )

var( ) var( ) var( )

var( ) var( ).

cal cal

MTE b UUT rep MTE rep UUT res MTE res

UUT op MTE op UUT other MTE other

u

e e e e e

e e e e

e=

- + - + -
=
+ - + -

 (8-49) 

 

Accounting for possible correlations between eUUT,op and eMTE,op and between eUUT,other and 

eMTE,other, the uncertainty in d can be expressed as 

 

 

2 2 2 2 2 2 2

, , , , , , ,

2 2

, , , , , ,2 2

MTE b MTE rep UUT rep MTE res UUT res MTE op UUT op

cal

op MTE op UUT op MTE other UUT other other MTE other UUT other

u u u u u u u
u

u u u u u ur r

+ + + + + +
=
- + + -

. (8-50)  
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8.5.1  Special Cases for Scenario 4 

There are two special cases of Scenario 4 that may be thought of as variations of Scenarios 1 and 

2.  Both cases are accommodated by the Scenario 4 definitions and expressions previously 

developed.  

 

Case 1:  The MTE measures the UUT and both the MTE and UUT provide a metered or 

other displayed output. 

In this case, the common artifact is the UUT attribute, consisting of a ñstimulusò embedded in 

the UUT.  An example would be a UUT voltage source whose output is indicated by a digital 

display and is measured using an MTE voltmeter. 

 

Case 2:  The UUT measures the MTE and both the MTE and UUT provide a metered or 

other displayed output. 

In this case, the common artifact is the MTE attribute, consisting of a ñstimulusò embedded in 

the MTE.  An example would be an MTE voltage source whose output is indicated by a digital 

display and is measured using a UUT voltmeter. 

 

8.6  Uncertainty Analysis Examples 

Four scenarios have been discussed that yield expressions for calibration uncertainty.  In all 

scenarios, the calibration result is expressed as 

 

,UUT b caled e= +  

 

 and the calibration uncertainty is 

 

var( )cal calu e= . 

 

Uncertainty analysis examples for the four calibration scenarios are provided in the following 

subsections.   

 

8.6.1  Scenario 1: The MTE Measures the UUT Attribute Value 

In this scenario, the measurement result is d = y ï xn and ecal is expressed in equation (8-12).  The 

example for this scenario consists of calibrating a 30 gm mass with a precision balance.  The 

uncertainty in the local gravity is considered to be negligible in this measurement process.    

Multiple measurements of the UUT mass are taken and the sample statistics are computed to be 

 

 Sample Mean  =  30.000047 gm 

 Standard Deviation =  1.15 ³ 10-5 gm 

 Uncertainty in the Mean = 6.64 ³ 10-6 gm 

 Sample Size = 3 

 

The measurement result is d = (30.000047 ï 30) gm = 4.7 ³ 10-5 gm.  However, the 

measurements are not taken in a vacuum, so the buoyancy of displaced air can introduce 

measurement error.  The balance is calibrated with calibration weights with a density of  

rwt = 8.0 gm/cm3.  The air buoyancy correction is 
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( )

( )

1 /

1 /

air wt

corr

air UUT

y y
r r

r r

-
= ³

-
 

 

where y  is the sample mean, rair is the local air density and rUUT is the density of the UUT 

mass.  For this analysis, we will assume that rair = 1.2 ³ 10-3 gm/cm3 and rUUT = 8.4 gm/cm3. 

The corrected sample mean is computed to be 

 

( )

( )

( )

( )

1 0.0012 /8.0
30.000047 gm

1 0.0012 /8.4

1 0.00015
30.000047 gm

1 0.00014

0.99985
30.000047 gm 30.000047 gm 0.99999

0.99986

29.99975gm

corry
-

= ³
-

-
= ³

-

= ³ = ³

=

 

 

and the corrected calibration result is corrd  = (29.99975 ï 30) gm = ï 2.5 ³ 10-4 gm.   

 

In the mass calibration scenario, the following measurement process errors must be considered: 

 

¶ Bias of the precision balance, eMTE,b. 

¶ Repeatability, eMTE,rep. 

¶ Error due to the digital resolution of the balance, eMTE,res. 

¶ Environmental factors error resulting from the buoyancy correction, eenv. 

 

The error in corrd  is 

, , ,cal MTE b MTE rep MTE res enve e e ee = + + + 

 

where 

, 1 2air UUTenv UUT enve e c e c er r= = +  

 

and 
air

er  and 
UUT

er  are the errors in the air and UUT densities, respectively.  The coefficients c1 

and c2 are sensitivity coefficients that determine the relative contribution of the errors 
air

er  and 

UUT
er  to the total error eenv.  The uncertainty in corrd  is 

 

, , , 1 2

2 2 2 2 2 2 2

, , , 1 2 1 2
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var( ) var( ) var( ) var( )

2 .

air UUT

air UUT air UUT

cal cal

MTE b MTE rep MTE res

MTE b MTE rep MTE res env

u

e e e c e c e

u u u c u c u c c u u

r r

r r r r

e

r

=

= + + + +

= + + + + +
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The correlation coefficient renv accounts for any correlation between 
air

er  and 
UUT

er .  The 

correlation coefficient can range in value from ï 1 to +1.  In this analysis, the error in the air 

density is considered to be uncorrelated to the error in the density of the UUT mass.  Therefore, 

renv = 0 and the uncertainty ucal can be expressed as  

 

( ) ( )

2 2 2 2 2 2 2

, , , 1 2

2 2
2 2 2

, , , 1 2

air UUT

air UUT

cal MTE b MTE rep MTE res

MTE b MTE rep MTE res

u u u u c u c u

u u u c u c u

r r

r r

= + + + +

= + + + +

 

 

The sensitivity coefficients are computed to be62 
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The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-2. 

 

                                                 
62 Guidance on the development of multivariate error models is provided in Chapter 6. 
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Table 8-2.  Summary of Scenario 1 Uncertainty Estimates 

 

 

Error  

 

Error  

Limits  

Confidence 

Level 

(%)  

Error  

Distribution  

 

Deg. of 

Freedom 

 

Analysis 

Type 

 

Standard 

Uncertainty 

eMTE,b ° 0.12 gm 95.00 Normal Infinite B 6.12 ³ 10-2 gm 

erep   Studentôs t 2 A 6.64 ³ 10-6 gm 

eres ° 0.005 gm 100.00 Uniform Infinite B 2.9 ³ 10-3 gm 

air
er   ° 3.6 ³ 10-5  gm/cm3 95.00 Normal Infinite B 1.84 ³ 10-5 gm/cm3 

UUT
er  ° 0.15 gm/cm3 95.00 Normal Infinite B 0.077 gm/cm3 

 

Using the data in Table 8-2, the uncertainty in corrd  is computed to be 
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The effective degrees of freedom neff for ucal can be estimated using the Welch-Satterthwaite 

formula. 
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Therefore, the degrees of freedom are computed to be 
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The results for the calibration of the 30 gm UUT mass are reported as 

 

 nx   =  30 gm 

 corrd   =  ï 2.5 ³ 10-4 gm 
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 ucal = 6.13 ³ 10-2 gm , infinite degrees of freedom. 

 

8.6.2  Scenario 2:  The UUT Measures the MTE Attribute Value 

In this scenario, the measurement result is d = x ï yn and ecal is expressed in equation (8-26).  The 

example for this scenario consists of calibrating an analog micrometer with a 10 mm gage block 

reference.  Multiple readings of the 10 mm gage block length are taken with the micrometer 

under laboratory environmental conditions of 24 C̄ ° 1 ̄ C.  The sample statistics are computed 

to be 

 

 Sample Mean  =  9.999 mm 

 Standard Deviation =  21.7 mm 

 Uncertainty in Mean = 7.7 mm 

 Sample Size = 8 

  

The measurement result is d = (9.999 ï 10) mm = ï1 mm.  However, both the micrometer 

reading and the gage block length must be corrected to 20 ̄ C standard reference temperature.  In 

this example, the gage block steel has a coefficient of thermal expansion of aMTE = 11.5 ³ 10-

6/ C̄ and the micrometer has a coefficient of thermal expansion of aUUT = 5.6 ³ 10-6/ C̄.  For the 

purposes of this analysis, the uncertainties in aMTE and aUUT are assumed to be negligible. 

 

The net effect of thermal expansion on the measurement result d is 

 

, ,env UUT env MTE envd d d= -  

 

where ,UUT envd  and ,MTE envd  represent thermal expansion of the micrometer and gage block 

dimensions, respectively.  The net length expansion is computed from the temperature difference 

DT, the average measured length x , the coefficient of thermal expansion for the gage block aMTE 

and the coefficient of thermal expansion for the micrometer aUUT. 

 

( )

( ) 6

4

4 C 9.999mm 5.6 11.5 10 / C

= 2.36 10 mm = 0.236ɛm

env UUT MTET xd a a

-

-

=D ³ ³ -

= ¯ ³ ³ - ³ ¯

- ³ -

 

 

The corrected calibration result corrd  is computed to be 

 

( )1 0.236ɛm

= 1.24ɛm

corr envd d d= +

=- +

-

 

 

In the micrometer calibration scenario, the following measurement process errors must be taken 

into account: 

 

¶ Bias in the value of the 10 mm gage block length, eMTE,b. 
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¶ Error associated with the repeat measurements taken, eUUT,rep. 

¶ Error associated with the analog resolution of the micrometer, eUUT,res. 

¶ Bias resulting from the operatorôs use of the micrometer to measure the gage block, 

eUUT,op. 

¶ Environmental factors error resulting from the thermal expansion correction, eenv. 

 

The error in corrd  is 

 

, , , ,cal MTE b UUT rep UUT res UUT op enve e e e ee = + + + + 

where  

 

( )env T UUT MTE T Te e x c ea aD D D= ³ - =  

 

and cDT is the sensitivity coefficient and eDT is the error due to the environmental temperature 

variation.  

 

The uncertainty in corrd  is 

 

( ) ( ) ( ) ( ) ( )2

, , , ,

2 2 2 2 2 2

, , , ,

var( )

var var var var var

.

cal cal

MTE b UUT rep UUT res UUT op T T

MTE b UUT rep UUT res UUT op T T

u

e e e e c e

u u u u c u

e

D D

D D

=

= + + + +

= + + + +

 

 

The distributions, limits, confidence levels and standard uncertainties for each error source are 

summarized in Table 8-3. 

 

Table 8-3.  Summary of Scenario 2 Uncertainty Estimates 

 

Error 

Source 

Error  

Limits  

(mm) 

Conf. 

Level 

(%)  

 

Error  

Distribution  

Degrees 

of 

Freedom 

 

Analysis 

Type 

Standard 

Uncertainty 
(mm) 

 

Sensitivity 

Coefficient 

eMTE,b + 0.18, -0.13 mm 90.00 Lognormal Infinite B 0.09 mm 1 

eUUT,rep   Studentôs t 7 A 7.7 mm 1 

eUUT,res ° 5.0 mm 95.00 Normal Infinite B 2.6 mm 1 

eUUT,op ° 5.0 mm 95.00 Normal Infinite B 2.6 mm 1 

eDT ° 1 ̄ C 95.00 Normal Infinite B 0.51 ̄ C -5.9³10-2 mm/̄ C   

 

Using the data in Table 8-3, the uncertainty in dcorr is 

 

( ) ( ) ( ) ( ) ( )
22 2 2 2 20.09 7.7 2.6 2.6 5.9 10 0.51ɛm

0.0081 59.29 6.76 6.76 0.0009ɛm

72.82ɛm 8.53ɛm

calu -= + + + + - ³ ³

= + + + +

= =

 

 


















































































































































































































































































